Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 155

Similar articles for PubMed (Select 24099740)

1.

Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1.

Posada IM, Busto JV, Goñi FM, Alonso A.

Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):388-97. doi: 10.1016/j.bbamem.2013.09.018. Epub 2013 Oct 4.

2.

Membrane binding of human phospholipid scramblase 1 cytoplasmic domain.

Posada IM, Sánchez-Magraner L, Hervás JH, Alonso A, Monaco HL, Goñi FM.

Biochim Biophys Acta. 2014 Jul;1838(7):1785-92. doi: 10.1016/j.bbamem.2014.03.009. Epub 2014 Mar 26.

PMID:
24680654
3.

The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.

Arouri A, Dathe M, Blume A.

Biophys Chem. 2013 Oct-Nov;180-181:10-21. doi: 10.1016/j.bpc.2013.05.003. Epub 2013 May 24.

PMID:
23792704
4.
5.

The C-terminal transmembrane domain of human phospholipid scramblase 1 is essential for the protein flip-flop activity and Ca²⁺-binding.

Sánchez-Magraner L, Posada IM, Andraka N, Contreras FX, Viguera AR, Guérin DM, Arrondo JL, Monaco HL, Goñi FM.

J Membr Biol. 2014 Feb;247(2):155-65. doi: 10.1007/s00232-013-9619-7. Epub 2013 Dec 17.

PMID:
24343571
6.

The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity.

Francis VG, Mohammed AM, Aradhyam GK, Gummadi SN.

FEBS J. 2013 Jun;280(12):2855-69. doi: 10.1111/febs.12289. Epub 2013 May 24.

PMID:
23590222
7.

A cholesterol recognition motif in human phospholipid scramblase 1.

Posada IM, Fantini J, Contreras FX, Barrantes F, Alonso A, Goñi FM.

Biophys J. 2014 Sep 16;107(6):1383-92. doi: 10.1016/j.bpj.2014.07.039.

PMID:
25229146
9.

Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.

Galanth C, Abbassi F, Lequin O, Ayala-Sanmartin J, Ladram A, Nicolas P, Amiche M.

Biochemistry. 2009 Jan 20;48(2):313-27. doi: 10.1021/bi802025a.

PMID:
19113844
11.

Autonomous transmembrane segment S4 of the voltage sensor domain partitions into the lipid membrane.

Tiriveedhi V, Miller M, Butko P, Li M.

Biochim Biophys Acta. 2012 Jul;1818(7):1698-705.

12.

Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment.

Soloaga A, Veiga MP, García-Segura LM, Ostolaza H, Brasseur R, Goñi FM.

Mol Microbiol. 1999 Feb;31(4):1013-24.

PMID:
10096071
14.

Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils.

Frasch SC, Henson PM, Nagaosa K, Fessler MB, Borregaard N, Bratton DL.

J Biol Chem. 2004 Apr 23;279(17):17625-33. Epub 2004 Feb 6.

15.

Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes.

Lewis RN, Liu F, Krivanek R, Rybar P, Hianik T, Flach CR, Mendelsohn R, Chen Y, Mant CT, Hodges RS, McElhaney RN.

Biochemistry. 2007 Jan 30;46(4):1042-54.

16.
17.

Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.

Voglino L, McIntosh TJ, Simon SA.

Biochemistry. 1998 Sep 1;37(35):12241-52.

PMID:
9724538
18.

Investigating the interaction between peptides of the amphipathic helix of Hcf106 and the phospholipid bilayer by solid-state NMR spectroscopy.

Zhang L, Liu L, Maltsev S, Lorigan GA, Dabney-Smith C.

Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):413-8. doi: 10.1016/j.bbamem.2013.10.007. Epub 2013 Oct 19.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk