Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 102

Similar articles for PubMed (Select 24094396)

1.

Mechanisms of beat-to-beat regulation of cardiac pacemaker cell function by Ca²⁺ cycling dynamics.

Yaniv Y, Stern MD, Lakatta EG, Maltsev VA.

Biophys J. 2013 Oct 1;105(7):1551-61. doi: 10.1016/j.bpj.2013.08.024.

2.

Beat-to-beat Ca(2+)-dependent regulation of sinoatrial nodal pacemaker cell rate and rhythm.

Yaniv Y, Maltsev VA, Escobar AL, Spurgeon HA, Ziman BD, Stern MD, Lakatta EG.

J Mol Cell Cardiol. 2011 Dec;51(6):902-5. doi: 10.1016/j.yjmcc.2011.08.029. Epub 2011 Sep 14.

3.

Roles of sarcoplasmic reticulum Ca2+ cycling and Na+/Ca2+ exchanger in sinoatrial node pacemaking: insights from bifurcation analysis of mathematical models.

Kurata Y, Hisatome I, Shibamoto T.

Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2285-300. doi: 10.1152/ajpheart.00221.2011. Epub 2012 Mar 23.

4.

Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.

Maltsev VA, Lakatta EG.

Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H594-615. doi: 10.1152/ajpheart.01118.2008. Epub 2009 Jan 9.

5.

Stochasticity intrinsic to coupled-clock mechanisms underlies beat-to-beat variability of spontaneous action potential firing in sinoatrial node pacemaker cells.

Yaniv Y, Lyashkov AE, Sirenko S, Okamoto Y, Guiriba TR, Ziman BD, Morrell CH, Lakatta EG.

J Mol Cell Cardiol. 2014 Dec;77:1-10. doi: 10.1016/j.yjmcc.2014.09.008. Epub 2014 Sep 22.

PMID:
25257916
6.

The emergence of a general theory of the initiation and strength of the heartbeat.

Maltsev VA, Vinogradova TM, Lakatta EG.

J Pharmacol Sci. 2006;100(5):338-69. Review.

7.

Ca²⁺-dependent phosphorylation of Ca²⁺ cycling proteins generates robust rhythmic local Ca²⁺ releases in cardiac pacemaker cells.

Sirenko S, Yang D, Li Y, Lyashkov AE, Lukyanenko YO, Lakatta EG, Vinogradova TM.

Sci Signal. 2013 Jan 29;6(260):ra6. doi: 10.1126/scisignal.2003391.

8.

Sarcoplasmic reticulum Ca2+ cycling protein phosphorylation in a physiologic Ca2+ milieu unleashes a high-power, rhythmic Ca2+ clock in ventricular myocytes: relevance to arrhythmias and bio-pacemaker design.

Sirenko S, Maltsev VA, Maltseva LA, Yang D, Lukyanenko Y, Vinogradova TM, Jones LR, Lakatta EG.

J Mol Cell Cardiol. 2014 Jan;66:106-15. doi: 10.1016/j.yjmcc.2013.11.011. Epub 2013 Nov 22.

9.

Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity.

Yaniv Y, Spurgeon HA, Lyashkov AE, Yang D, Ziman BD, Maltsev VA, Lakatta EG.

PLoS One. 2012;7(5):e37582. doi: 10.1371/journal.pone.0037582. Epub 2012 May 29.

10.

Synchronization of stochastic Ca²(+) release units creates a rhythmic Ca²(+) clock in cardiac pacemaker cells.

Maltsev AV, Maltsev VA, Mikheev M, Maltseva LA, Sirenko SG, Lakatta EG, Stern MD.

Biophys J. 2011 Jan 19;100(2):271-83. doi: 10.1016/j.bpj.2010.11.081.

11.

A novel quantitative explanation for the autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins.

Maltsev VA, Lakatta EG.

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2010-23. doi: 10.1152/ajpheart.00783.2009. Epub 2010 Mar 12.

12.

High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells.

Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D, Deo S, Barlow M, Johnson S, Caffrey JL, Zhou YY, Xiao RP, Cheng H, Stern MD, Maltsev VA, Lakatta EG.

Circ Res. 2006 Mar 3;98(4):505-14. Epub 2006 Jan 19.

13.
14.

New evidence for coupled clock regulation of the normal automaticity of sinoatrial nodal pacemaker cells: bradycardic effects of ivabradine are linked to suppression of intracellular Ca²⁺ cycling.

Yaniv Y, Sirenko S, Ziman BD, Spurgeon HA, Maltsev VA, Lakatta EG.

J Mol Cell Cardiol. 2013 Sep;62:80-9. doi: 10.1016/j.yjmcc.2013.04.026. Epub 2013 May 5.

15.

Calcium cycling protein density and functional importance to automaticity of isolated sinoatrial nodal cells are independent of cell size.

Lyashkov AE, Juhaszova M, Dobrzynski H, Vinogradova TM, Maltsev VA, Juhasz O, Spurgeon HA, Sollott SJ, Lakatta EG.

Circ Res. 2007 Jun 22;100(12):1723-31. Epub 2007 May 24.

16.

Sarcoplasmic reticulum Ca2+ pumping kinetics regulates timing of local Ca2+ releases and spontaneous beating rate of rabbit sinoatrial node pacemaker cells.

Vinogradova TM, Brochet DX, Sirenko S, Li Y, Spurgeon H, Lakatta EG.

Circ Res. 2010 Sep 17;107(6):767-75. doi: 10.1161/CIRCRESAHA.110.220517. Epub 2010 Jul 22.

17.

Rhythmic Ca2+ oscillations drive sinoatrial nodal cell pacemaker function to make the heart tick.

Vinogradova TM, Maltsev VA, Bogdanov KY, Lyashkov AE, Lakatta EG.

Ann N Y Acad Sci. 2005 Jun;1047:138-56. Review.

PMID:
16093492
18.

Calcium transient and sodium-calcium exchange current in human versus rabbit sinoatrial node pacemaker cells.

Verkerk AO, van Borren MM, Wilders R.

ScientificWorldJournal. 2013 Feb 24;2013:507872. doi: 10.1155/2013/507872. Print 2013.

19.

Beyond Bowditch: the convergence of cardiac chronotropy and inotropy.

Lakatta EG.

Cell Calcium. 2004 Jun;35(6):629-42.

PMID:
15110153
20.

Cholinergic receptor signaling modulates spontaneous firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca(2+) cycling and I(KACh).

Lyashkov AE, Vinogradova TM, Zahanich I, Li Y, Younes A, Nuss HB, Spurgeon HA, Maltsev VA, Lakatta EG.

Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H949-59. doi: 10.1152/ajpheart.01340.2008. Epub 2009 Jun 19.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk