Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 83

Similar articles for PubMed (Select 24084685)

1.

Metabolic labeling of leucine rich repeat kinases 1 and 2 with radioactive phosphate.

Taymans JM, Gao F, Baekelandt V.

J Vis Exp. 2013 Sep 18;(79):e50523. doi: 10.3791/50523.

PMID:
24084685
2.

Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?

Civiero L, Bubacco L.

Biochem Soc Trans. 2012 Oct;40(5):1095-101. Review.

PMID:
22988872
3.

Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers.

Civiero L, Vancraenenbroeck R, Belluzzi E, Beilina A, Lobbestael E, Reyniers L, Gao F, Micetic I, De Maeyer M, Bubacco L, Baekelandt V, Cookson MR, Greggio E, Taymans JM.

PLoS One. 2012;7(8):e43472. doi: 10.1371/journal.pone.0043472. Epub 2012 Aug 29.

4.

Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.

Vancraenenbroeck R, Lobbestael E, Weeks SD, Strelkov SV, Baekelandt V, Taymans JM, De Maeyer M.

Biochim Biophys Acta. 2012 Mar;1824(3):450-60. doi: 10.1016/j.bbapap.2011.12.009. Epub 2012 Jan 11.

PMID:
22251894
5.

Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations.

Mills RD, Mulhern TD, Cheng HC, Culvenor JG.

Biochem Soc Trans. 2012 Oct;40(5):1086-9. Review.

PMID:
22988870
6.

The Parkinson disease gene LRRK2: evolutionary and structural insights.

MarĂ­n I.

Mol Biol Evol. 2006 Dec;23(12):2423-33. Epub 2006 Sep 11.

7.

LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

Taymans JM, Vancraenenbroeck R, Ollikainen P, Beilina A, Lobbestael E, De Maeyer M, Baekelandt V, Cookson MR.

PLoS One. 2011;6(8):e23207. doi: 10.1371/journal.pone.0023207. Epub 2011 Aug 12.

8.

Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis.

Xing W, Liu J, Cheng S, Vogel P, Mohan S, Brommage R.

J Bone Miner Res. 2013 Sep;28(9):1962-74. doi: 10.1002/jbmr.1935.

PMID:
23526378
9.

Signal transduction protein array analysis links LRRK2 to Ste20 kinases and PKC zeta that modulate neuronal plasticity.

Zach S, Felk S, Gillardon F.

PLoS One. 2010 Oct 7;5(10):e13191. doi: 10.1371/journal.pone.0013191.

10.

Measuring the activity of leucine-rich repeat kinase 2: a kinase involved in Parkinson's disease.

Lee BD, Li X, Dawson TM, Dawson VL.

Methods Mol Biol. 2012;795:45-54. doi: 10.1007/978-1-61779-337-0_3.

PMID:
21960214
11.

GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease.

Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T.

Biochemistry. 2007 Feb 6;46(5):1380-8.

PMID:
17260967
12.

Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways.

Reyniers L, Del Giudice MG, Civiero L, Belluzzi E, Lobbestael E, Beilina A, Arrigoni G, Derua R, Waelkens E, Li Y, Crosio C, Iaccarino C, Cookson MR, Baekelandt V, Greggio E, Taymans JM.

J Neurochem. 2014 Jun 20. doi: 10.1111/jnc.12798. [Epub ahead of print]

PMID:
24947832
13.

LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity.

Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR.

Biochem J. 2007 Jul 15;405(2):307-17.

14.

Identification of the autophosphorylation sites of LRRK2.

Kamikawaji S, Ito G, Iwatsubo T.

Biochemistry. 2009 Nov 24;48(46):10963-75. doi: 10.1021/bi9011379.

PMID:
19824698
15.

Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: Implications for Parkinson's disease.

Westerlund M, Belin AC, Anvret A, Bickford P, Olson L, Galter D.

Neuroscience. 2008 Mar 18;152(2):429-36. doi: 10.1016/j.neuroscience.2007.10.062. Epub 2008 Jan 10.

PMID:
18272292
16.

LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain.

Korr D, Toschi L, Donner P, Pohlenz HD, Kreft B, Weiss B.

Cell Signal. 2006 Jun;18(6):910-20. Epub 2005 Oct 21.

PMID:
16243488
17.

Inhibition of LRRK2 kinase activity stimulates macroautophagy.

Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar MP, Plun-Favreau H, Giunti P, Tooze SA, Bandopadhyay R, Lewis PA.

Biochim Biophys Acta. 2013 Dec;1833(12):2900-10. doi: 10.1016/j.bbamcr.2013.07.020. Epub 2013 Aug 1.

18.

14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization.

Nichols RJ, Dzamko N, Morrice NA, Campbell DG, Deak M, Ordureau A, Macartney T, Tong Y, Shen J, Prescott AR, Alessi DR.

Biochem J. 2010 Sep 15;430(3):393-404. doi: 10.1042/BJ20100483.

19.

LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25.

Yun HJ, Park J, Ho DH, Kim H, Kim CH, Oh H, Ga I, Seo H, Chang S, Son I, Seol W.

Exp Mol Med. 2013 Aug 16;45:e36. doi: 10.1038/emm.2013.68.

20.

Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.

Klein CL, Rovelli G, Springer W, Schall C, Gasser T, Kahle PJ.

J Neurochem. 2009 Nov;111(3):703-15. doi: 10.1111/j.1471-4159.2009.06358.x. Epub 2009 Aug 27.

PMID:
19712061
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk