Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 85

1.

Activating Ag by even more inert Au: a peculiar effect on electrocatalysis toward oxygen reduction in alkaline media.

Yang C, Huang B, Xiao L, Ren Z, Liu Z, Lu J, Zhuang L.

Chem Commun (Camb). 2013 Dec 7;49(94):11023-5. doi: 10.1039/c3cc46522e.

PMID:
24067877
[PubMed]
2.

Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.

Ye F, Liu H, Hu W, Zhong J, Chen Y, Cao H, Yang J.

Dalton Trans. 2012 Mar 14;41(10):2898-903. doi: 10.1039/c2dt11960a. Epub 2012 Jan 20.

PMID:
22261896
[PubMed]
3.

Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media.

Spendelow JS, Wieckowski A.

Phys Chem Chem Phys. 2007 Jun 7;9(21):2654-75. Epub 2007 May 9. Review.

PMID:
17627310
[PubMed - indexed for MEDLINE]
4.

Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction.

Gu H, Yang Y, Tian J, Shi G.

ACS Appl Mater Interfaces. 2013 Jul 24;5(14):6762-8. doi: 10.1021/am401738k. Epub 2013 Jul 8.

PMID:
23790187
[PubMed - in process]
5.

Zinc phthalocyanine and silver/gold nanoparticles incorporated MCM-41 type materials as electrode modifiers.

Pal M, Ganesan V.

Langmuir. 2009 Nov 17;25(22):13264-72. doi: 10.1021/la901792b.

PMID:
19824690
[PubMed]
6.

Electrocatalysis of peroxide reduction by Au-stabilized, Fe-containing poly(vinylpyridine) films.

Kim J, Gewirth AA.

J Phys Chem B. 2005 May 19;109(19):9684-90.

PMID:
16852167
[PubMed]
7.

Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation.

Liu JH, Wang AQ, Chi YS, Lin HP, Mou CY.

J Phys Chem B. 2005 Jan 13;109(1):40-3.

PMID:
16850981
[PubMed - indexed for MEDLINE]
8.

Blood interactions with noble metals: coagulation and immune complement activation.

Hulander M, Hong J, Andersson M, Gervén F, Ohrlander M, Tengvall P, Elwing H.

ACS Appl Mater Interfaces. 2009 May;1(5):1053-62. doi: 10.1021/am900028e.

PMID:
20355891
[PubMed - indexed for MEDLINE]
9.

Silver and gold icosahedra: one-pot water-based synthesis and their superior performance in the electrocatalysis for oxygen reduction reactions in alkaline media.

Kuai L, Geng B, Wang S, Zhao Y, Luo Y, Jiang H.

Chemistry. 2011 Mar 14;17(12):3482-9. doi: 10.1002/chem.201002949. Epub 2011 Feb 23.

PMID:
21344521
[PubMed]
10.

Charge effect in S enhanced CO adsorption: A theoretical study of CO on Au, Ag, Cu, and Pd (111) surfaces coadsorbed with S, O, Cl, and Na.

Gan LY, Zhao YJ.

J Chem Phys. 2010 Sep 7;133(9):094703. doi: 10.1063/1.3483235. Erratum in: J Chem Phys. 2011 Feb 14;134(6):069902.

PMID:
20831329
[PubMed]
11.

Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media.

Slanac DA, Hardin WG, Johnston KP, Stevenson KJ.

J Am Chem Soc. 2012 Jun 13;134(23):9812-9. doi: 10.1021/ja303580b. Epub 2012 May 31.

PMID:
22594532
[PubMed - indexed for MEDLINE]
12.

Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.

Wang AQ, Chang CM, Mou CY.

J Phys Chem B. 2005 Oct 13;109(40):18860-7.

PMID:
16853427
[PubMed - indexed for MEDLINE]
13.

Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT.

Hansen HA, Rossmeisl J, Nørskov JK.

Phys Chem Chem Phys. 2008 Jul 7;10(25):3722-30. doi: 10.1039/b803956a. Epub 2008 May 27.

PMID:
18563233
[PubMed - indexed for MEDLINE]
14.

One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation.

Zhang H, Okuni J, Toshima N.

J Colloid Interface Sci. 2011 Feb 1;354(1):131-8. doi: 10.1016/j.jcis.2010.10.036. Epub 2010 Oct 21.

PMID:
21067768
[PubMed]
15.

Catalytic Pt-on-Au nanostructures: why Pt becomes more active on smaller Au particles.

Zhang GR, Zhao D, Feng YY, Zhang B, Su DS, Liu G, Xu BQ.

ACS Nano. 2012 Mar 27;6(3):2226-36. doi: 10.1021/nn204378t. Epub 2012 Feb 22.

PMID:
22324631
[PubMed]
16.

Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au.

Wang LC, Zhong Y, Jin H, Widmann D, Weissmüller J, Behm RJ.

Beilstein J Nanotechnol. 2013;4:111-28. doi: 10.3762/bjnano.4.13. Epub 2013 Feb 19.

PMID:
23503603
[PubMed]
Free PMC Article
17.

Mechanical properties, fracture surface characterization, and microstructural analysis of six noble dental casting alloys.

Ucar Y, Brantley WA, Johnston WM, Dasgupta T.

J Prosthet Dent. 2011 Jun;105(6):394-402. doi: 10.1016/S0022-3913(11)60081-4.

PMID:
21640241
[PubMed - indexed for MEDLINE]
18.

Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface.

Xu B, Siler CG, Madix RJ, Friend CM.

Chemistry. 2014 Apr 14;20(16):4646-52. doi: 10.1002/chem.201304837. Epub 2014 Mar 13.

PMID:
24633724
[PubMed - in process]
19.

Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework.

Jiang HL, Akita T, Ishida T, Haruta M, Xu Q.

J Am Chem Soc. 2011 Feb 9;133(5):1304-6. doi: 10.1021/ja1099006. Epub 2011 Jan 7.

PMID:
21214205
[PubMed]
20.

Effect of a new metal primer on the bond strength between a resin cement and two high-noble alloys.

Antoniadou M, Kern M, Strub JR.

J Prosthet Dent. 2000 Nov;84(5):554-60.

PMID:
11105011
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk