Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 122

1.

Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells.

Gurunathan S, Han JW, Eppakayala V, Dayem AA, Kwon DN, Kim JH.

Nanoscale Res Lett. 2013 Sep 23;8(1):393. doi: 10.1186/1556-276X-8-393.

PMID:
24059222
[PubMed]
Free PMC Article
2.

Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.

Gurunathan S, Han JW, Park JH, Eppakayala V, Kim JH.

Int J Nanomedicine. 2014;9:363-77. doi: 10.2147/IJN.S53538. Epub 2014 Jan 7.

PMID:
24453487
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231).

Gurunathan S, Han J, Park JH, Kim JH.

Int J Nanomedicine. 2014 Apr 8;9:1783-97. doi: 10.2147/IJN.S57735. eCollection 2014.

PMID:
24741313
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Green chemistry approach for the synthesis of biocompatible graphene.

Gurunathan S, Han JW, Kim JH.

Int J Nanomedicine. 2013;8:2719-32. doi: 10.2147/IJN.S45174. Epub 2013 Jul 31.

PMID:
23940417
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

Green synthesis of graphene and its cytotoxic effects in human breast cancer cells.

Gurunathan S, Han JW, Eppakayala V, Kim JH.

Int J Nanomedicine. 2013;8:1015-27. doi: 10.2147/IJN.S42047. Epub 2013 Mar 10.

PMID:
23687445
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.

Gurunathan S, Han JW, Eppakayala V, Kim JH.

Colloids Surf B Biointerfaces. 2013 May 1;105:58-66. doi: 10.1016/j.colsurfb.2012.12.036. Epub 2013 Jan 5.

PMID:
23352948
[PubMed - indexed for MEDLINE]
7.

An environmentally friendly approach to the reduction of graphene oxide by Escherichia fergusoni.

Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH.

J Nanosci Nanotechnol. 2013 Mar;13(3):2091-8.

PMID:
23755651
[PubMed - indexed for MEDLINE]
8.

Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene.

Gurunathan S, Woong Han J, Kim E, Kwon DN, Park JK, Kim JH.

J Nanobiotechnology. 2014 Oct 3;12:41. doi: 10.1186/s12951-014-0041-9.

PMID:
25273520
[PubMed - in process]
Free PMC Article
9.

Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.

Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH.

Int J Nanomedicine. 2012;7:5901-14. doi: 10.2147/IJN.S37397. Epub 2012 Nov 30.

PMID:
23226696
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Humanin: a novel functional molecule for the green synthesis of graphene.

Gurunathan S, Han J, Kim JH.

Colloids Surf B Biointerfaces. 2013 Nov 1;111:376-83. doi: 10.1016/j.colsurfb.2013.06.018. Epub 2013 Jun 24.

PMID:
23850746
[PubMed - in process]
11.

Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant.

Shen X, Jiang L, Ji Z, Wu J, Zhou H, Zhu G.

J Colloid Interface Sci. 2011 Feb 15;354(2):493-7. doi: 10.1016/j.jcis.2010.11.037. Epub 2010 Nov 20.

PMID:
21145557
[PubMed]
12.

Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions.

Xu M, Chai J, Hu N, Huang D, Wang Y, Huang X, Wei H, Yang Z, Zhang Y.

Nanotechnology. 2014 Oct 3;25(39):395602. doi: 10.1088/0957-4484/25/39/395602. Epub 2014 Sep 11.

PMID:
25208570
[PubMed - in process]
13.

A green chemistry approach for synthesizing biocompatible gold nanoparticles.

Gurunathan S, Han J, Park JH, Kim JH.

Nanoscale Res Lett. 2014 May 21;9(1):248. doi: 10.1186/1556-276X-9-248. eCollection 2014.

PMID:
24940177
[PubMed]
Free PMC Article
14.

Dipotassium hydrogen phosphate as reducing agent for the efficient reduction of graphene oxide nanosheets.

Zhang X, Li K, Li H, Lu J.

J Colloid Interface Sci. 2013 Nov 1;409:1-7. doi: 10.1016/j.jcis.2013.07.021. Epub 2013 Jul 20.

PMID:
23978284
[PubMed]
15.

Graphene oxide reduced and modified by environmentally friendly glycylglycine and its excellent catalytic performance.

Zhang C, Chen M, Xu X, Zhang L, Zhang L, Xia F, Li X, Liu Y, Hu W, Gao J.

Nanotechnology. 2014 Apr 4;25(13):135707. Epub 2014 Mar 5.

PMID:
24598357
[PubMed]
16.

Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process.

Zhang Y, Hu W, Li B, Peng C, Fan C, Huang Q.

Nanotechnology. 2011 Aug 26;22(34):345601. doi: 10.1088/0957-4484/22/34/345601. Epub 2011 Jul 28.

PMID:
21795771
[PubMed - indexed for MEDLINE]
17.

Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.

Gurunathan S, Han JW, Eppakayala V, Kim JH.

Colloids Surf B Biointerfaces. 2013 Feb 1;102:772-7. doi: 10.1016/j.colsurfb.2012.09.011. Epub 2012 Sep 17.

PMID:
23107955
[PubMed - indexed for MEDLINE]
18.

Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing.

Amouzadeh Tabrizi M, Jalilzadeh Azar S, Nadali Varkani J.

Anal Biochem. 2014 Sep 1;460:29-35. doi: 10.1016/j.ab.2014.05.002. Epub 2014 May 15.

PMID:
24835427
[PubMed - in process]
19.

An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility.

Wang J, Zhou T, Deng H, Chen F, Wang K, Zhang Q, Fu Q.

Colloids Surf B Biointerfaces. 2013 Jan 1;101:171-6. doi: 10.1016/j.colsurfb.2012.06.008. Epub 2012 Jun 19.

PMID:
22796788
[PubMed - indexed for MEDLINE]
20.

Facile one-pot synthesis of folic acid-modified graphene to improve the performance of graphene-based sensing strategy.

Zhan L, Zhang Y, Zeng QL, Liu ZD, Huang CZ.

J Colloid Interface Sci. 2014 Jul 15;426:293-9. doi: 10.1016/j.jcis.2014.03.056. Epub 2014 Apr 2.

PMID:
24863796
[PubMed - in process]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk