Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

An intragenic SRF-dependent regulatory motif directs cardiac-specific microRNA-1-1/133a-2 expression.

Li Q, Guo J, Lin X, Yang X, Ma Y, Fan GC, Chang J.

PLoS One. 2013 Sep 13;8(9):e75470. doi: 10.1371/journal.pone.0075470. eCollection 2013.

2.

An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133.

Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, Richardson JA, Bassel-Duby R, Olson EN.

Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20844-9. Epub 2007 Dec 19.

3.

Regulation of cardiac microRNAs by serum response factor.

Zhang X, Azhar G, Helms SA, Wei JY.

J Biomed Sci. 2011 Feb 8;18:15. doi: 10.1186/1423-0127-18-15.

4.

Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis.

Angelini A, Li Z, Mericskay M, Decaux JF.

PLoS One. 2015 Oct 6;10(10):e0139858. doi: 10.1371/journal.pone.0139858. eCollection 2015.

5.

microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart.

Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN.

Genes Dev. 2008 Dec 1;22(23):3242-54. doi: 10.1101/gad.1738708. Epub 2008 Nov 17.

6.

Transgenic overexpression of miR-133a in skeletal muscle.

Deng Z, Chen JF, Wang DZ.

BMC Musculoskelet Disord. 2011 May 26;12:115. doi: 10.1186/1471-2474-12-115.

7.

Regulation of microRNAs by Brahma-related gene 1 (Brg1) in smooth muscle cells.

Chen M, Herring BP.

J Biol Chem. 2013 Mar 1;288(9):6397-408. doi: 10.1074/jbc.M112.409474. Epub 2013 Jan 20.

8.

MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts.

Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW 2nd.

Circ Res. 2010 Jan 8;106(1):166-75. doi: 10.1161/CIRCRESAHA.109.202176. Epub 2009 Nov 5.

9.

miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development.

Wystub K, Besser J, Bachmann A, Boettger T, Braun T.

PLoS Genet. 2013;9(9):e1003793. doi: 10.1371/journal.pgen.1003793. Epub 2013 Sep 19.

10.

Reversine induces multipotency of lineage-committed cells through epigenetic silencing of miR-133a.

Kim M, Yi SA, Lee H, Bang SY, Park EK, Lee MG, Nam KH, Yoo JH, Lee DH, Ryu HW, Kwon SH, Han JW.

Biochem Biophys Res Commun. 2014 Feb 28;445(1):255-62. doi: 10.1016/j.bbrc.2014.02.002. Epub 2014 Feb 7.

PMID:
24513286
11.

RISC RNA sequencing for context-specific identification of in vivo microRNA targets.

Matkovich SJ, Van Booven DJ, Eschenbacher WH, Dorn GW 2nd.

Circ Res. 2011 Jan 7;108(1):18-26. doi: 10.1161/CIRCRESAHA.110.233528. Epub 2010 Oct 28.

12.

miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction.

Izarra A, Moscoso I, Levent E, Cañón S, Cerrada I, Díez-Juan A, Blanca V, Núñez-Gil IJ, Valiente I, Ruíz-Sauri A, Sepúlveda P, Tiburcy M, Zimmermann WH, Bernad A.

Stem Cell Reports. 2014 Dec 9;3(6):1029-42. doi: 10.1016/j.stemcr.2014.10.010. Epub 2014 Nov 20.

13.

Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos.

Yeung F, Chung E, Guess MG, Bell ML, Leinwand LA.

Nucleic Acids Res. 2012 Aug;40(15):7303-18. doi: 10.1093/nar/gks466. Epub 2012 May 25.

14.

Affinity purification of microRNA-133a with the cardiac transcription factor, Hand2.

Vo NK, Dalton RP, Liu N, Olson EN, Goodman RH.

Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19231-6. doi: 10.1073/pnas.1013162107. Epub 2010 Oct 25.

15.

The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway.

Granjon A, Gustin MP, Rieusset J, Lefai E, Meugnier E, Güller I, Cerutti C, Paultre C, Disse E, Rabasa-Lhoret R, Laville M, Vidal H, Rome S.

Diabetes. 2009 Nov;58(11):2555-64. doi: 10.2337/db09-0165. Epub 2009 Aug 31.

16.

In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2) is an indispensable step in myogenic differentiation.

Chen X, Wang K, Chen J, Guo J, Yin Y, Cai X, Guo X, Wang G, Yang R, Zhu L, Zhang Y, Wang J, Xiang Y, Weng C, Zen K, Zhang J, Zhang CY.

J Biol Chem. 2009 Feb 20;284(8):5362-9. doi: 10.1074/jbc.M807523200. Epub 2008 Dec 10.

17.

miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes.

Li AY, Yang Q, Yang K.

Mol Cell Biochem. 2015 Feb;400(1-2):173-81. doi: 10.1007/s11010-014-2273-2. Epub 2014 Nov 25.

PMID:
25421410
18.

microRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway.

Cui W, Zhang S, Shan C, Zhou L, Zhou Z.

FEBS J. 2013 Aug;280(16):3962-74. doi: 10.1111/febs.12398. Epub 2013 Jul 10.

19.

A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells.

Mughal W, Nguyen L, Pustylnik S, da Silva Rosa SC, Piotrowski S, Chapman D, Du M, Alli NS, Grigull J, Halayko AJ, Aliani M, Topham MK, Epand RM, Hatch GM, Pereira TJ, Kereliuk S, McDermott JC, Rampitsch C, Dolinsky VW, Gordon JW.

Cell Death Dis. 2015 Oct 29;6:e1944. doi: 10.1038/cddis.2015.306.

PMID:
26512955
20.

Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy.

Liu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu Y, Voelker KA, Grange RW, Richardson JA, Bassel-Duby R, Olson EN.

J Clin Invest. 2011 Aug;121(8):3258-68. doi: 10.1172/JCI46267.

Items per page

Supplemental Content

Write to the Help Desk