Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Electroosmotic flow velocity measurements in a square microchannel.

Hsieh SS, Lin HC, Lin CY.

Colloid Polym Sci. 2006;284:1275-1286. Epub 2006 May 19.

2.

Direct and indirect electroosmotic flow velocity measurements in microchannels.

Sinton D, Escobedo-Canseco C, Ren L, Li D.

J Colloid Interface Sci. 2002 Oct 1;254(1):184-9.

PMID:
12702440
3.

Particle tracking techniques for electrokinetic microchannel flows.

Devasenathipathy S, Santiago JG, Takehara K.

Anal Chem. 2002 Aug 1;74(15):3704-13.

PMID:
12175157
4.

DNA stretching on the wall surfaces in curved microchannels with different radii.

Hsieh SS, Wu FH, Tsai MJ.

Nanoscale Res Lett. 2014 Aug 7;9(1):382. doi: 10.1186/1556-276X-9-382. eCollection 2014.

5.

Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.

Tang G, Yan D, Yang C, Gong H, Chai JC, Lam YC.

Electrophoresis. 2006 Feb;27(3):628-39.

PMID:
16456892
6.

In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements.

Sureda M, Miller A, Diez FJ.

Electrophoresis. 2012 Sep;33(17):2759-68. doi: 10.1002/elps.201200202.

PMID:
22965723
8.

Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.

Peng R, Li D.

J Colloid Interface Sci. 2015 Feb 15;440:126-32. doi: 10.1016/j.jcis.2014.10.061. Epub 2014 Nov 8.

PMID:
25460698
9.

Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels.

Cevheri N, Yoda M.

Electrophoresis. 2013 Jul;34(13):1950-6. doi: 10.1002/elps.201300083. Epub 2013 Jun 12.

PMID:
23592366
10.

Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.

Shao C, Devoe DL.

Methods Mol Biol. 2013;949:55-63. doi: 10.1007/978-1-62703-134-9_4.

PMID:
23329435
11.

A method to determine zeta potential and Navier slip coefficient of microchannels.

Park HM.

J Colloid Interface Sci. 2010 Jul 1;347(1):132-41. doi: 10.1016/j.jcis.2010.03.024. Epub 2010 Mar 15.

PMID:
20362996
12.

Determination of the Navier slip coefficient of microchannels exploiting the streaming potential.

Park HM.

Electrophoresis. 2012 Mar;33(6):906-15. doi: 10.1002/elps.201100287.

PMID:
22528410
13.

Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.

Xuan X, Li D.

J Colloid Interface Sci. 2005 Sep 1;289(1):291-303.

PMID:
16009236
14.
15.

Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography.

Chen G, Tallarek U, Seidel-Morgenstern A, Zhang Y.

J Chromatogr A. 2004 Jul 30;1044(1-2):287-94.

PMID:
15354450
16.

Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary.

Kaneta T, Ueda T, Hata K, Imasaka T.

J Chromatogr A. 2006 Feb 17;1106(1-2):52-5. Epub 2005 Sep 8.

PMID:
16443452
17.

Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels.

Park HM, Kim TW.

Anal Chim Acta. 2007 Jun 19;593(2):171-7. Epub 2007 May 1.

PMID:
17543604
18.

In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.

Lima R, Wada S, Tanaka S, Takeda M, Ishikawa T, Tsubota K, Imai Y, Yamaguchi T.

Biomed Microdevices. 2008 Apr;10(2):153-67.

PMID:
17885805
19.

Analysis of electroosmotic flow with step change in zeta potential.

Fu LM, Lin JY, Yang RJ.

J Colloid Interface Sci. 2003 Feb 15;258(2):266-75.

PMID:
12618096
20.

Electroosmotic flow in nanofluidic channels.

Haywood DG, Harms ZD, Jacobson SC.

Anal Chem. 2014 Nov 18;86(22):11174-80. doi: 10.1021/ac502596m. Epub 2014 Nov 3.

Items per page

Supplemental Content

Write to the Help Desk