Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 103

1.

Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells.

Dhar BR, Gao Y, Yeo H, Lee HS.

Bioresour Technol. 2013 Nov;148:208-14. doi: 10.1016/j.biortech.2013.08.138. Epub 2013 Aug 31.

PMID:
24047682
[PubMed - in process]
2.

Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells.

Gao Y, Ryu H, Santo Domingo JW, Lee HS.

Bioresour Technol. 2014 Feb;153:245-53. doi: 10.1016/j.biortech.2013.11.077. Epub 2013 Dec 3.

PMID:
24368273
[PubMed - in process]
3.

Upflow anaerobic sludge blanket reactor--a review.

Bal AS, Dhagat NN.

Indian J Environ Health. 2001 Apr;43(2):1-82. Review.

PMID:
12397675
[PubMed - indexed for MEDLINE]
4.

Syntrophic interactions among anode respiring bacteria (ARB) and Non-ARB in a biofilm anode: electron balances.

Parameswaran P, Torres CI, Lee HS, Krajmalnik-Brown R, Rittmann BE.

Biotechnol Bioeng. 2009 Jun 15;103(3):513-23. doi: 10.1002/bit.22267.

PMID:
19191353
[PubMed - indexed for MEDLINE]
5.

Kinetics of consumption of fermentation products by anode-respiring bacteria.

Torres CI, Marcus AK, Rittmann BE.

Appl Microbiol Biotechnol. 2007 Dec;77(3):689-97. Epub 2007 Oct 2.

PMID:
17909786
[PubMed - indexed for MEDLINE]
6.

Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.

Lee HS, Rittmann BE.

Environ Sci Technol. 2010 Feb 1;44(3):948-54. doi: 10.1021/es9025358.

PMID:
20030379
[PubMed - indexed for MEDLINE]
7.

Influence of step increases in hydraulic retention time on (RS)-MCPP degradation using an anaerobic membrane bioreactor.

Yuzir A, Chelliapan S, Sallis PJ.

Bioresour Technol. 2011 Oct;102(20):9456-61. doi: 10.1016/j.biortech.2011.07.083. Epub 2011 Aug 3.

PMID:
21862323
[PubMed - indexed for MEDLINE]
8.

Anaerobic membrane bioreactor treatment of synthetic municipal wastewater at ambient temperature.

Ho J, Sung S.

Water Environ Res. 2009 Sep-Oct;81(9):922-8.

PMID:
19860148
[PubMed - indexed for MEDLINE]
9.

Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters.

Martínez ME, Ranilla MJ, Ramos S, Tejido ML, Carro MD.

J Dairy Sci. 2009 Aug;92(8):3930-8. doi: 10.3168/jds.2008-1975.

PMID:
19620676
[PubMed - indexed for MEDLINE]
10.

Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.

Call D, Logan BE.

Environ Sci Technol. 2008 May 1;42(9):3401-6.

PMID:
18522125
[PubMed - indexed for MEDLINE]
11.

Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.

Lu L, Xing D, Ren N.

Water Res. 2012 May 1;46(7):2425-34. doi: 10.1016/j.watres.2012.02.005. Epub 2012 Feb 11.

PMID:
22374298
[PubMed - indexed for MEDLINE]
12.

Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater.

Ho J, Sung S.

Bioresour Technol. 2010 Apr;101(7):2191-6. doi: 10.1016/j.biortech.2009.11.042. Epub 2009 Dec 22.

PMID:
20022745
[PubMed - indexed for MEDLINE]
13.

Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.

Lu L, Xing D, Xie T, Ren N, Logan BE.

Biosens Bioelectron. 2010 Aug 15;25(12):2690-5. doi: 10.1016/j.bios.2010.05.003. Epub 2010 May 10.

PMID:
20537524
[PubMed - indexed for MEDLINE]
14.

Hydrogen and methane production from swine wastewater using microbial electrolysis cells.

Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE.

Water Res. 2009 Mar;43(5):1480-8. doi: 10.1016/j.watres.2008.12.037. Epub 2009 Jan 3.

PMID:
19138783
[PubMed - indexed for MEDLINE]
15.

Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.

Parameswaran P, Torres CI, Lee HS, Rittmann BE, Krajmalnik-Brown R.

Bioresour Technol. 2011 Jan;102(1):263-71. doi: 10.1016/j.biortech.2010.03.133. Epub 2010 Apr 28.

PMID:
20430615
[PubMed - indexed for MEDLINE]
16.

The role of homoacetogenic bacteria as efficient hydrogen scavengers in microbial electrochemical cells (MXCs).

Parameswaran P, Torres CI, Kang DW, Rittmann BE, Krajmalnik-Brown R.

Water Sci Technol. 2012;65(1):1-6. doi: 10.2166/wst.2011.519.

PMID:
22173401
[PubMed - indexed for MEDLINE]
17.

Methanogenesis in membraneless microbial electrolysis cells.

Clauwaert P, Verstraete W.

Appl Microbiol Biotechnol. 2009 Apr;82(5):829-36. doi: 10.1007/s00253-008-1796-4. Epub 2008 Dec 3.

PMID:
19050859
[PubMed - indexed for MEDLINE]
18.

Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates.

Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE.

Water Res. 2008 Mar;42(6-7):1501-10. Epub 2007 Nov 1.

PMID:
18035391
[PubMed - indexed for MEDLINE]
19.

Microbial electrolysis cell with a microbial biocathode.

Jeremiasse AW, Hamelers HV, Buisman CJ.

Bioelectrochemistry. 2010 Apr;78(1):39-43. doi: 10.1016/j.bioelechem.2009.05.005. Epub 2009 May 27.

PMID:
19523879
[PubMed - indexed for MEDLINE]
20.

Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.

Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE.

Environ Sci Technol. 2009 Dec 15;43(24):9519-24. doi: 10.1021/es902165y.

PMID:
20000550
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk