Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 96

Similar articles for PubMed (Select 24024085)

1.

On some properties of the generalized Mittag-Leffler function.

Khan MA, Ahmed S.

Springerplus. 2013 Jul 23;2:337. doi: 10.1186/2193-1801-2-337. eCollection 2013.

2.

On the generalized fractional integrals of the generalized Mittag-Leffler function.

Ahmed S.

Springerplus. 2014 Apr 22;3:198. doi: 10.1186/2193-1801-3-198. eCollection 2014.

3.

Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise.

Viñales AD, Wang KG, Despósito MA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011101. Epub 2009 Jul 1.

PMID:
19658647
4.

Anomalous diffusion induced by a Mittag-Leffler correlated noise.

Viñales AD, Despósito MA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):042102. Epub 2007 Apr 11.

PMID:
17500938
5.

Velocity autocorrelation of a free particle driven by a Mittag-Leffler noise: fractional dynamics and temporal behaviors.

Viñales AD, Paissan GH.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062103. Epub 2014 Dec 1.

PMID:
25615040
6.

Generating relations and other results associated with some families of the extended Hurwitz-Lerch Zeta functions.

M HS.

Springerplus. 2013 Feb 25;2:67. doi: 10.1186/2193-1801-2-67. eCollection 2013.

7.

Effect of noise and detector sensitivity on a dynamical process: inverse power law and Mittag-Leffler interevent time survival probabilities.

Pramukkul P, Svenkeson A, Grigolini P.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022107. Epub 2014 Feb 10.

PMID:
25353422
8.

Anomalous diffusion: exact solution of the generalized Langevin equation for harmonically bounded particle.

Viñales AD, Despósito MA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 2):016111. Epub 2006 Jan 12.

PMID:
16486220
9.

Integrodifferential diffusion equation for continuous-time random walk.

Fa KS, Wang KG.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011126. Epub 2010 Jan 21.

PMID:
20365342
10.

Alternative numerical computation of one-sided Lévy and Mittag-Leffler distributions.

Saa A, Venegeroles R.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):026702. Epub 2011 Aug 5.

PMID:
21929139
11.

A Pathway Idea for Model Building.

Mathai AM, Moschopoulos P.

J Stat Appl Probab. 2012;1(1):15-20.

12.

Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach.

Jurlewicz A, Weron K, Teuerle M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011103. Epub 2008 Jul 2.

PMID:
18763915
13.

Some bilinear generating functions.

Srivastava HM.

Proc Natl Acad Sci U S A. 1969 Oct;64(2):462-5.

14.

Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation.

Fulger D, Scalas E, Germano G.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021122. Epub 2008 Feb 25.

PMID:
18352002
15.

The matrix-valued hypergeometric equation.

Tirao JA.

Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8138-41. Epub 2003 Jun 24.

16.

Circular beams.

Bandres MA, Gutiérrez-Vega JC.

Opt Lett. 2008 Jan 15;33(2):177-9.

PMID:
18197231
17.

Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function.

Despósito MA, Viñales AD.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021111. Epub 2009 Aug 14.

PMID:
19792081
18.

Fractional compartmental models and multi-term Mittag-Leffler response functions.

Verotta D.

J Pharmacokinet Pharmacodyn. 2010 Apr;37(2):209-15; discussion 217-20. doi: 10.1007/s10928-010-9155-3. Epub 2010 Apr 20.

19.

Correlation Structure of Fractional Pearson Diffusions.

Leonenko NN, Meerschaert MM, Sikorskii A.

Comput Math Appl. 2013 Sep 1;66(5):737-745.

20.

Analytic solution of the fractional advection-diffusion equation for the time-of-flight experiment in a finite geometry.

Philippa BW, White RD, Robson RE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041138. Epub 2011 Oct 28.

PMID:
22181118
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk