Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system.

Zhang C, Man BY, Yang C, Jiang SZ, Liu M, Chen CS, Xu SC, Sun ZC, Gao XG, Chen XJ.

Nanotechnology. 2013 Oct 4;24(39):395603. doi: 10.1088/0957-4484/24/39/395603. Epub 2013 Sep 6.

PMID:
24013529
2.

Facile synthesis 3D flexible core-shell graphene/glass fiber via chemical vapor deposition.

Yang C, Xu Y, Zhang C, Sun Z, Chen C, Li X, Jiang S, Man B.

Nanoscale Res Lett. 2014 Aug 13;9(1):394. doi: 10.1186/1556-276X-9-394. eCollection 2014.

3.

Direct chemical vapor deposition of graphene on dielectric surfaces.

Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y.

Nano Lett. 2010 May 12;10(5):1542-8. doi: 10.1021/nl9037714.

PMID:
20361753
4.

Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin HJ, Baik J, Choi HC.

ACS Nano. 2013 Aug 27;7(8):6575-82. doi: 10.1021/nn402847w. Epub 2013 Jul 24.

PMID:
23869700
5.

Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition.

Chan SH, Chen SH, Lin WT, Li MC, Lin YC, Kuo CC.

Nanoscale Res Lett. 2013 Jun 12;8(1):285. doi: 10.1186/1556-276X-8-285.

6.

Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.

Wu W, Yu Q, Peng P, Liu Z, Bao J, Pei SS.

Nanotechnology. 2012 Jan 27;23(3):035603. doi: 10.1088/0957-4484/23/3/035603. Epub 2011 Dec 16.

PMID:
22173552
7.

Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.

Feng Y, Chen K.

Nanotechnology. 2015 Jan 21;26(3):035302. doi: 10.1088/0957-4484/26/3/035302. Epub 2014 Dec 30.

PMID:
25549272
8.

Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth.

Wang L, Zhang X, Chan HL, Yan F, Ding F.

J Am Chem Soc. 2013 Mar 20;135(11):4476-82. doi: 10.1021/ja312687a. Epub 2013 Mar 11.

PMID:
23444843
9.

Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.

Kahng YH, Lee S, Park W, Jo G, Choe M, Lee JH, Yu H, Lee T, Lee K.

Nanotechnology. 2012 Feb 24;23(7):075702. doi: 10.1088/0957-4484/23/7/075702. Epub 2012 Jan 20.

PMID:
22261350
10.

Multilayered graphene in K(a)-band: nanoscale coating for aerospace applications.

Kuzhir P, Volynets N, Maksimenko S, Kaplas T, Svirko Y.

J Nanosci Nanotechnol. 2013 Aug;13(8):5864-7.

PMID:
23882850
11.

Remote catalyzation for direct formation of graphene layers on oxides.

Teng PY, Lu CC, Akiyama-Hasegawa K, Lin YC, Yeh CH, Suenaga K, Chiu PW.

Nano Lett. 2012 Mar 14;12(3):1379-84. doi: 10.1021/nl204024k. Epub 2012 Feb 16.

PMID:
22332771
12.

Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition.

Gao T, Xie S, Gao Y, Liu M, Chen Y, Zhang Y, Liu Z.

ACS Nano. 2011 Nov 22;5(11):9194-201. doi: 10.1021/nn203440r. Epub 2011 Nov 2.

PMID:
22023251
13.

Chemical Vapor Deposited Few-Layer Graphene as an Electron Field Emitter.

Behural SK, Nayak S, Yang Q, Hirose A, Janil O.

J Nanosci Nanotechnol. 2016 Jan;16(1):287-95.

PMID:
27398456
14.

Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils.

Chen S, Cai W, Piner RD, Suk JW, Wu Y, Ren Y, Kang J, Ruoff RS.

Nano Lett. 2011 Sep 14;11(9):3519-25. doi: 10.1021/nl201699j. Epub 2011 Aug 3.

PMID:
21793495
15.

Graphene growth at the interface between Ni catalyst layer and SiO2/Si substrate.

Lee JH, Song KW, Park MH, Kim HK, Yang CW.

J Nanosci Nanotechnol. 2011 Jul;11(7):6468-71.

PMID:
22121737
16.

Substrate Considerations for the Formation of the Graphene-CNTs Hybrid on the Dielectric Substrate.

Yang C, Zhang C, Xu Y, Cao C, Man B.

J Nanosci Nanotechnol. 2016 Jan;16(1):312-6.

PMID:
27398459
17.

Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.

Jeon I, Yang H, Lee SH, Heo J, Seo DH, Shin J, Chung UI, Kim ZG, Chung HJ, Seo S.

ACS Nano. 2011 Mar 22;5(3):1915-20. doi: 10.1021/nn102916c. Epub 2011 Feb 10.

PMID:
21309604
18.

Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition.

Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW.

Nano Lett. 2011 Nov 9;11(11):4547-54. doi: 10.1021/nl201566c. Epub 2011 Oct 4.

PMID:
21942318
19.

A novel method for large area graphene transfer on the polymer optical fiber.

Kulkarni A, Kim H, Amin R, Park SH, Hong BH, Kim T.

J Nanosci Nanotechnol. 2012 May;12(5):3918-21.

PMID:
22852325
20.

Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts.

Shin HA, Ryu J, Cho SP, Lee EK, Cho S, Lee C, Joo YC, Hong BH.

Phys Chem Chem Phys. 2014 Feb 21;16(7):3087-94. doi: 10.1039/c3cp54748e.

PMID:
24399098
Items per page

Supplemental Content

Write to the Help Desk