Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response.

Silva MC, Amaral MD, Morimoto RI.

PLoS Genet. 2013 Aug;9(8):e1003711. doi: 10.1371/journal.pgen.1003711. Epub 2013 Aug 29.

2.

The dystrophin-associated protein complex maintains muscle excitability by regulating Ca(2+)-dependent K(+) (BK) channel localization.

Sancar F, Touroutine D, Gao S, Oh HJ, Gendrel M, Bessereau JL, Kim H, Zhen M, Richmond JE.

J Biol Chem. 2011 Sep 23;286(38):33501-10. doi: 10.1074/jbc.M111.227678. Epub 2011 Jul 27.

3.

Regulation of organismal proteostasis by transcellular chaperone signaling.

van Oosten-Hawle P, Porter RS, Morimoto RI.

Cell. 2013 Jun 6;153(6):1366-78. doi: 10.1016/j.cell.2013.05.015.

4.

Integrin-linked kinase modulates longevity and thermotolerance in C. elegans through neuronal control of HSF-1.

Kumsta C, Ching TT, Nishimura M, Davis AE, Gelino S, Catan HH, Yu X, Chu CC, Ong B, Panowski SH, Baird N, Bodmer R, Hsu AL, Hansen M.

Aging Cell. 2014 Jun;13(3):419-30. doi: 10.1111/acel.12189. Epub 2014 Jan 9.

5.

A genetic screening strategy identifies novel regulators of the proteostasis network.

Silva MC, Fox S, Beam M, Thakkar H, Amaral MD, Morimoto RI.

PLoS Genet. 2011 Dec;7(12):e1002438. doi: 10.1371/journal.pgen.1002438. Epub 2011 Dec 29.

6.

Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging.

Barna J, Princz A, Kosztelnik M, Hargitai B, Takács-Vellai K, Vellai T.

BMC Dev Biol. 2012 Nov 1;12:32. doi: 10.1186/1471-213X-12-32.

7.

Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells.

Garcia SM, Casanueva MO, Silva MC, Amaral MD, Morimoto RI.

Genes Dev. 2007 Nov 15;21(22):3006-16.

8.

Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase.

Tatum MC, Ooi FK, Chikka MR, Chauve L, Martinez-Velazquez LA, Steinbusch HW, Morimoto RI, Prahlad V.

Curr Biol. 2015 Jan 19;25(2):163-74. doi: 10.1016/j.cub.2014.11.040. Epub 2014 Dec 31.

9.

A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans.

Maman M, Carvalhal Marques F, Volovik Y, Dubnikov T, Bejerano-Sagie M, Cohen E.

J Neurosci. 2013 Apr 3;33(14):6102-11. doi: 10.1523/JNEUROSCI.4023-12.2013.

10.

Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins.

Prahlad V, Morimoto RI.

Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14204-9. doi: 10.1073/pnas.1106557108. Epub 2011 Aug 15.

12.

Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses.

van Oosten-Hawle P, Morimoto RI.

J Exp Biol. 2014 Jan 1;217(Pt 1):129-36. doi: 10.1242/jeb.091249. Review.

13.

SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans.

Liu P, Chen B, Wang ZW.

Nat Commun. 2014 Oct 10;5:5155. doi: 10.1038/ncomms6155.

14.

Fluorodeoxyuridine enhances the heat shock response and decreases polyglutamine aggregation in an HSF-1-dependent manner in Caenorhabditis elegans.

Brunquell J, Bowers P, Westerheide SD.

Mech Ageing Dev. 2014 Nov-Dec;141-142:1-4. doi: 10.1016/j.mad.2014.08.002. Epub 2014 Aug 26.

PMID:
25168631
15.

Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones.

Morley JF, Morimoto RI.

Mol Biol Cell. 2004 Feb;15(2):657-64. Epub 2003 Dec 10.

16.

A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans.

Jensen LT, Møller TH, Larsen SA, Jakobsen H, Olsen A.

Aging Cell. 2012 Feb;11(1):82-92. doi: 10.1111/j.1474-9726.2011.00767.x. Epub 2011 Dec 11.

17.

Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling.

van Oosten-Hawle P, Morimoto RI.

Genes Dev. 2014 Jul 15;28(14):1533-43. doi: 10.1101/gad.241125.114. Review.

18.

Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons.

Prahlad V, Cornelius T, Morimoto RI.

Science. 2008 May 9;320(5877):811-4. doi: 10.1126/science.1156093.

19.

Heterotypic Signals from Neural HSF-1 Separate Thermotolerance from Longevity.

Douglas PM, Baird NA, Simic MS, Uhlein S, McCormick MA, Wolff SC, Kennedy BK, Dillin A.

Cell Rep. 2015 Aug 18;12(7):1196-204. doi: 10.1016/j.celrep.2015.07.026. Epub 2015 Aug 6.

20.

Caenorhabditis elegans HSF-1 is an essential nuclear protein that forms stress granule-like structures following heat shock.

Morton EA, Lamitina T.

Aging Cell. 2013 Feb;12(1):112-20. doi: 10.1111/acel.12024. Epub 2012 Nov 23.

Items per page

Supplemental Content

Write to the Help Desk