Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 218

1.

Li segregation induces structure and strength changes at the amorphous Si/Cu interface.

Stournara ME, Xiao X, Qi Y, Johari P, Lu P, Sheldon BW, Gao H, Shenoy VB.

Nano Lett. 2013 Oct 9;13(10):4759-68. doi: 10.1021/nl402353k. Epub 2013 Sep 10.

PMID:
24000887
2.

Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.

Zhao K, Wang WL, Gregoire J, Pharr M, Suo Z, Vlassak JJ, Kaxiras E.

Nano Lett. 2011 Jul 13;11(7):2962-7. doi: 10.1021/nl201501s. Epub 2011 Jun 24.

PMID:
21692465
3.

Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries.

Jerliu B, Dörrer L, Hüger E, Borchardt G, Steitz R, Geckle U, Oberst V, Bruns M, Schneider O, Schmidt H.

Phys Chem Chem Phys. 2013 May 28;15(20):7777-84. doi: 10.1039/c3cp44438d. Epub 2013 Apr 19.

PMID:
23598350
4.

Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

Zhang Z, Wang Y, Tan Q, Li D, Chen Y, Zhong Z, Su F.

Nanoscale. 2014 Jan 7;6(1):371-7. doi: 10.1039/c3nr04323a. Epub 2013 Nov 7.

PMID:
24201898
5.

25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.

McDowell MT, Lee SW, Nix WD, Cui Y.

Adv Mater. 2013 Sep 25;25(36):4966-85. doi: 10.1002/adma.201301795. Epub 2013 Aug 22. Review.

PMID:
24038172
6.

In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.

Wang CM, Li X, Wang Z, Xu W, Liu J, Gao F, Kovarik L, Zhang JG, Howe J, Burton DJ, Liu Z, Xiao X, Thevuthasan S, Baer DR.

Nano Lett. 2012 Mar 14;12(3):1624-32. doi: 10.1021/nl204559u. Epub 2012 Mar 6.

PMID:
22385150
7.

Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.

Pharr M, Zhao K, Wang X, Suo Z, Vlassak JJ.

Nano Lett. 2012 Sep 12;12(9):5039-47. doi: 10.1021/nl302841y. Epub 2012 Aug 20.

PMID:
22889293
8.

In situ atomic-scale imaging of electrochemical lithiation in silicon.

Liu XH, Wang JW, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh SA, Davydov AV, Mao SX, Picraux ST, Zhang S, Li J, Zhu T, Huang JY.

Nat Nanotechnol. 2012 Nov;7(11):749-56. doi: 10.1038/nnano.2012.170. Epub 2012 Oct 7.

PMID:
23042490
9.

Managing voids of Si anodes in lithium ion batteries.

Li X, Zhi L.

Nanoscale. 2013 Oct 7;5(19):8864-73. doi: 10.1039/c3nr03197g. Epub 2013 Aug 14. Review.

PMID:
23942726
10.

In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.

Wu M, Sabisch JE, Song X, Minor AM, Battaglia VS, Liu G.

Nano Lett. 2013;13(11):5397-402. doi: 10.1021/nl402953h. Epub 2013 Oct 2.

PMID:
24079331
11.

Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale.

Liu Y, Liu XH, Nguyen BM, Yoo J, Sullivan JP, Picraux ST, Huang JY, Dayeh SA.

Nano Lett. 2013 Oct 9;13(10):4876-83. doi: 10.1021/nl4027549. Epub 2013 Sep 5.

PMID:
24000810
12.

Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.

Wang JW, Liu XH, Zhao K, Palmer A, Patten E, Burton D, Mao SX, Suo Z, Huang JY.

ACS Nano. 2012 Oct 23;6(10):9158-67. doi: 10.1021/nn3034343. Epub 2012 Sep 24.

PMID:
22984869
13.

Reduction mechanisms of ethylene carbonate on si anodes of lithium-ion batteries: effects of degree of lithiation and nature of exposed surface.

Martinez de la Hoz JM, Leung K, Balbuena PB.

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):13457-65. doi: 10.1021/am404365r. Epub 2013 Nov 22.

PMID:
24224826
14.

Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.

Cui LF, Ruffo R, Chan CK, Peng H, Cui Y.

Nano Lett. 2009 Jan;9(1):491-5. doi: 10.1021/nl8036323.

PMID:
19105648
15.

Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.

Hu L, Wu H, Hong SS, Cui L, McDonough JR, Bohy S, Cui Y.

Chem Commun (Camb). 2011 Jan 7;47(1):367-9. doi: 10.1039/c0cc02078h. Epub 2010 Sep 10.

PMID:
20830432
16.

Lithium-assisted electrochemical welding in silicon nanowire battery electrodes.

Karki K, Epstein E, Cho JH, Jia Z, Li T, Picraux ST, Wang C, Cumings J.

Nano Lett. 2012 Mar 14;12(3):1392-7. doi: 10.1021/nl204063u. Epub 2012 Feb 21.

PMID:
22339576
17.

Biomimetic nanostructuring of copper thin films enhances adhesion to the negative electrode laminate in lithium-ion batteries.

Zheng Z, Wang Z, Song X, Xun S, Battaglia V, Liu G.

ChemSusChem. 2014 Oct;7(10):2853-8. doi: 10.1002/cssc.201402543. Epub 2014 Aug 19.

PMID:
25139044
18.

Adsorption and diffusion of lithium on layered silicon for Li-ion storage.

Tritsaris GA, Kaxiras E, Meng S, Wang E.

Nano Lett. 2013 May 8;13(5):2258-63. doi: 10.1021/nl400830u. Epub 2013 Apr 23. Erratum in: Nano Lett. 2013 Jun 12;13(6):3004.

PMID:
23611247
19.

Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

Qiu MC, Yang LW, Qi X, Li J, Zhong JX.

ACS Appl Mater Interfaces. 2010 Dec;2(12):3614-8. doi: 10.1021/am100791z. Epub 2010 Nov 15.

PMID:
21077626
20.

Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries.

Pharr M, Suo Z, Vlassak JJ.

Nano Lett. 2013;13(11):5570-7. doi: 10.1021/nl403197m. Epub 2013 Oct 9.

PMID:
24099504
Items per page

Supplemental Content

Write to the Help Desk