Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 156

1.

Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation.

Wang H, Chen F, Mu S, Zhang D, Pan X, Lee DJ, Chang JS.

Bioresour Technol. 2013 Oct;146:799-802. doi: 10.1016/j.biortech.2013.08.002. Epub 2013 Aug 12.

PMID:
23993285
2.

Arsenic removal in a sulfidogenic fixed-bed column bioreactor.

Altun M, Sahinkaya E, Durukan I, Bektas S, Komnitsas K.

J Hazard Mater. 2014 Mar 30;269:31-7. doi: 10.1016/j.jhazmat.2013.11.047. Epub 2013 Nov 27.

PMID:
24360509
3.

Microbiological reduction of Sb(V) in anoxic freshwater sediments.

Kulp TR, Miller LG, Braiotta F, Webb SM, Kocar BD, Blum JS, Oremland RS.

Environ Sci Technol. 2014;48(1):218-26. doi: 10.1021/es403312j. Epub 2013 Dec 9.

PMID:
24274659
4.

Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.

Bekmezci OK, Ucar D, Kaksonen AH, Sahinkaya E.

J Hazard Mater. 2011 May 30;189(3):670-6. doi: 10.1016/j.jhazmat.2011.01.087. Epub 2011 Jan 28.

PMID:
21320747
5.

Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.

Geets J, Vanbroekhoven K, Borremans B, Vangronsveld J, Diels L, van der Lelie D.

Environ Sci Pollut Res Int. 2006 Oct;13(6):362-78.

PMID:
17120826
6.

Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.

Hiller E, Petrák M, Tóth R, Lalinská-Voleková B, Jurkovič L, Kučerová G, Radková A, Sottník P, Vozár J.

Environ Sci Pollut Res Int. 2013 Nov;20(11):7627-42. doi: 10.1007/s11356-013-1581-5. Epub 2013 Feb 24.

PMID:
23436124
7.

Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.

Sahinkaya E, Gungor M, Bayrakdar A, Yucesoy Z, Uyanik S.

J Hazard Mater. 2009 Nov 15;171(1-3):901-6. doi: 10.1016/j.jhazmat.2009.06.089. Epub 2009 Jun 23.

PMID:
19608339
8.

Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage.

Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR.

Environ Toxicol. 2002 Feb;17(1):40-8.

PMID:
11847973
9.

Sulfidogenic fluidized bed treatment of real acid mine drainage water.

Sahinkaya E, Gunes FM, Ucar D, Kaksonen AH.

Bioresour Technol. 2011 Jan;102(2):683-9. doi: 10.1016/j.biortech.2010.08.042. Epub 2010 Aug 24.

PMID:
20832297
10.

[Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

Hudz' SP, Peretiatko TB, Moroz OM, Hnatush SO, Klym IR.

Mikrobiol Z. 2011 Mar-Apr;73(2):33-8. Ukrainian.

PMID:
21598657
11.

Sulfate reduction at low pH to remediate acid mine drainage.

Sánchez-Andrea I, Sanz JL, Bijmans MF, Stams AJ.

J Hazard Mater. 2014 Mar 30;269:98-109. doi: 10.1016/j.jhazmat.2013.12.032. Epub 2013 Dec 26.

PMID:
24444599
12.

Fate of Sb(V) and Sb(III) species along a gradient of pH and oxygen concentration in the Carnoulès mine waters (Southern France).

Resongles E, Casiot C, Elbaz-Poulichet F, Freydier R, Bruneel O, Piot C, Delpoux S, Volant A, Desoeuvre A.

Environ Sci Process Impacts. 2013 Aug;15(8):1536-44. doi: 10.1039/c3em00215b.

PMID:
23793399
13.

Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China.

Liu F, Le XC, McKnight-Whitford A, Xia Y, Wu F, Elswick E, Johnson CC, Zhu C.

Environ Geochem Health. 2010 Oct;32(5):401-13. doi: 10.1007/s10653-010-9284-z. Epub 2010 Jan 26.

PMID:
20101438
14.

Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China.

Fu Z, Wu F, Amarasiriwardena D, Mo C, Liu B, Zhu J, Deng Q, Liao H.

Sci Total Environ. 2010 Jul 15;408(16):3403-10. doi: 10.1016/j.scitotenv.2010.04.031. Epub 2010 May 8.

PMID:
20452645
15.

Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.

Logan MV, Reardon KF, Figueroa LA, McLain JE, Ahmann DM.

Water Res. 2005 Nov;39(18):4537-51. Epub 2005 Oct 5.

PMID:
16213004
16.

Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

Utgikar VP, Chen BY, Chaudhary N, Tabak HH, Haines JR, Govind R.

Environ Toxicol Chem. 2001 Dec;20(12):2662-9.

PMID:
11764146
17.

Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China.

Zhang G, Liu CQ, Liu H, Hu J, Han G, Li L.

J Environ Monit. 2009 Sep;11(9):1570-8. doi: 10.1039/b908612a. Epub 2009 Jul 11.

PMID:
19724824
18.

Effective removal and recovery of antimony using metal-loaded saponified orange waste.

Biswas BK, Inoue J, Kawakita H, Ohto K, Inoue K.

J Hazard Mater. 2009 Dec 30;172(2-3):721-8. doi: 10.1016/j.jhazmat.2009.07.055. Epub 2009 Jul 22.

PMID:
19726128
19.

Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS).

Guo X, Wu Z, He M.

Water Res. 2009 Sep;43(17):4327-35. doi: 10.1016/j.watres.2009.06.033. Epub 2009 Jun 24.

PMID:
19595424
20.

Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system.

Labrenz M, Banfield JF.

Microb Ecol. 2004 Apr;47(3):205-17. Epub 2004 Mar 4.

PMID:
14994175
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk