Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants.

Turger A, Köhler J, Denkena B, Correa TA, Becher C, Hurschler C.

Biomed Eng Online. 2013 Aug 29;12:84. doi: 10.1186/1475-925X-12-84.

2.
4.

Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study.

Zietz C, Bergschmidt P, Lange R, Mittelmeier W, Bader R.

Int J Artif Organs. 2013 Jan;36(1):47-55. doi: 10.5301/ijao.5000189.

PMID:
23335379
5.

Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus.

Morita Y, Nakata K, Kim YH, Sekino T, Niihara K, Ikeuchi K.

Biomed Mater Eng. 2004;14(3):263-70.

PMID:
15299238
6.

A rolling-gliding wear simulator for the investigation of tribological material pairings for application in total knee arthroplasty.

Richter BI, Ostermeier S, Turger A, Denkena B, Hurschler C.

Biomed Eng Online. 2010 Jun 15;9:24. doi: 10.1186/1475-925X-9-24.

7.

The influence of design, materials and kinematics on the in vitro wear of total knee replacements.

McEwen HM, Barnett PI, Bell CJ, Farrar R, Auger DD, Stone MH, Fisher J.

J Biomech. 2005 Feb;38(2):357-65.

PMID:
15598464
8.

Ceramic versus cobalt-chrome femoral components; wear of polyethylene insert in total knee prosthesis.

Oonishi H, Ueno M, Kim SC, Oonishi H, Iwamoto M, Kyomoto M.

J Arthroplasty. 2009 Apr;24(3):374-82. doi: 10.1016/j.arth.2007.10.021. Epub 2008 Jun 4.

PMID:
18524533
9.

Low wear rate of UHMWPE against zirconia ceramic (Y-PSZ) in comparison to alumina ceramic and SUS 316L alloy.

Kumar P, Oka M, Ikeuchi K, Shimizu K, Yamamuro T, Okumura H, Kotoura Y.

J Biomed Mater Res. 1991 Jul;25(7):813-28.

PMID:
1918102
10.

Mixed oxides prosthetic ceramic ball heads. Part 1: effect of the ZrO2 fraction on the wear of ceramic on polythylene joints.

Affatato S, Testoni M, Cacciari GL, Toni A.

Biomaterials. 1999 May;20(10):971-5.

PMID:
10353651
11.

Assessment of non-contacting optical methods to measure wear and surface roughness in ceramic total disc replacements.

Green NC, Bowen J, Hukins DW, Shepherd DE.

Proc Inst Mech Eng H. 2015 Mar;229(3):245-54. doi: 10.1177/0954411915577119.

PMID:
25834000
12.

Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements.

Clarke IC, Good V, Williams P, Schroeder D, Anissian L, Stark A, Oonishi H, Schuldies J, Gustafson G.

Proc Inst Mech Eng H. 2000;214(4):331-47.

PMID:
10997055
13.

Wear analysis and finishing of bioceramic implant surfaces.

Denkena B, Reichstein M, van der Meer M, Ostermeier S, Hurschler C.

Stud Health Technol Inform. 2008;133:75-82.

PMID:
18376015
14.

Ceramic composites for biomedical applications.

Rieu J, Goeuriot P.

Clin Mater. 1993;12(4):211-7.

PMID:
10171689
15.
16.

Is ceramic-on-ceramic squeaking phenomenon reproducible in vitro? A long-term simulator study under severe conditions.

Affatato S, Traina F, Mazzega-Fabbro C, Sergo V, Viceconti M.

J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):264-71. doi: 10.1002/jbm.b.31398.

PMID:
19422051
17.

Wear and surface analysis of 38 mm ceramic-on-metal total hip replacements under standard and severe wear testing conditions.

Williams SR, Wu JJ, Unsworth A, Khan I.

Proc Inst Mech Eng H. 2011 Aug;225(8):783-96.

PMID:
21922955
18.

[20 years aluminum oxide ceramics for medical applications].

Willmann G.

Biomed Tech (Berl). 1994 Apr;39(4):73-8. German.

PMID:
8018814
19.

Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation.

Williams S, Butterfield M, Stewart T, Ingham E, Stone M, Fisher J.

Proc Inst Mech Eng H. 2003;217(2):147-53.

PMID:
12666782
20.

[Ceramic couplings in orthopedic surgery].

Thomsen M, Willmann G.

Orthopade. 2003 Jan;32(1):11-6. German.

PMID:
12557081
Items per page

Supplemental Content

Write to the Help Desk