Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 114

Similar articles for PubMed (Select 23987806)

1.

Alterations in lignin content and phenylpropanoids pathway in date palm (Phoenix dactylifera L.) tissues affected by brittle leaf disease.

Saidi MN, Bouaziz D, Hammami I, Namsi A, Drira N, Gargouri-Bouzid R.

Plant Sci. 2013 Oct;211:8-16. doi: 10.1016/j.plantsci.2013.06.008. Epub 2013 Jun 21.

PMID:
23987806
2.

Brittle leaf disease induces an oxidative stress and decreases the expression of manganese-related genes in date palm (Phoenix dactylifera L.).

Saidi MN, Jbir R, Ghorbel I, Namsi A, Drira N, Gargouri-Bouzid R.

Plant Physiol Biochem. 2012 Jan;50(1):1-7. doi: 10.1016/j.plaphy.2011.09.016. Epub 2011 Oct 2.

PMID:
22099513
3.

A set of novel RNAs transcribed from the chloroplast genome accumulates in date palm leaflets affected by brittle leaf disease.

Marqués J, Fadda ZG, Duran-Vila N, Flores R, Bové JM, Daròs JA.

Phytopathology. 2008 Mar;98(3):337-44. doi: 10.1094/PHYTO-98-3-0337.

4.

Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase.

O'Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C, Petit-Conil M, Schuch W, Halpin C.

Transgenic Res. 2002 Oct;11(5):495-503.

PMID:
12437080
5.
6.

The Mn-binding proteins of the photosystem II oxygen-evolving complex are decreased in date palms affected by brittle leaf disease.

Marqués J, Duran-Vila N, Daròs JA.

Plant Physiol Biochem. 2011 Apr;49(4):388-94. doi: 10.1016/j.plaphy.2011.02.008. Epub 2011 Feb 12.

PMID:
21371899
7.

Identification of transcription factors involved in rice secondary cell wall formation.

Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M.

Plant Cell Physiol. 2013 Nov;54(11):1791-802. doi: 10.1093/pcp/pct122. Epub 2013 Oct 1.

PMID:
24089432
8.

Proteomics analysis of date palm leaves affected at three characteristic stages of brittle leaf disease.

Sghaier-Hammami B, Saidi MN, Castillejo MA, Jorrín-Novo JV, Namsi A, Drira N, Gargouri-Bouzid R.

Planta. 2012 Nov;236(5):1599-613. doi: 10.1007/s00425-012-1713-z. Epub 2012 Jul 29.

PMID:
22843243
9.

Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations?

Kim SJ, Kim KW, Cho MH, Franceschi VR, Davin LB, Lewis NG.

Phytochemistry. 2007 Jul;68(14):1957-74. Epub 2007 Apr 27.

PMID:
17467016
10.

Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco.

Prashant S, Srilakshmi Sunita M, Pramod S, Gupta RK, Anil Kumar S, Rao Karumanchi S, Rawal SK, Kavi Kishor PB.

Plant Cell Rep. 2011 Dec;30(12):2215-31. doi: 10.1007/s00299-011-1127-6. Epub 2011 Aug 17.

PMID:
21847621
12.

Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense.

Tan YC, Yeoh KA, Wong MY, Ho CL.

J Plant Physiol. 2013 Nov 1;170(16):1455-60. doi: 10.1016/j.jplph.2013.05.009. Epub 2013 Jun 13.

PMID:
23769496
13.

Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants.

Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM.

Plant J. 2001 Nov;28(3):257-70.

PMID:
11722769
14.

Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration.

Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet AM, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W.

Plant J. 2007 Oct;52(2):263-85. Epub 2007 Aug 28.

PMID:
17727617
15.

Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity.

Sindhu A, Langewisch T, Olek A, Multani DS, McCann MC, Vermerris W, Carpita NC, Johal G.

Plant Physiol. 2007 Dec;145(4):1444-59. Epub 2007 Oct 11.

16.

Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression.

Tamasloukht B, Wong Quai Lam MS, Martinez Y, Tozo K, Barbier O, Jourda C, Jauneau A, Borderies G, Balzergue S, Renou JP, Huguet S, Martinant JP, Tatout C, Lapierre C, Barrière Y, Goffner D, Pichon M.

J Exp Bot. 2011 Jul;62(11):3837-48. doi: 10.1093/jxb/err077. Epub 2011 Apr 14.

17.

The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana.

Thévenin J, Pollet B, Letarnec B, Saulnier L, Gissot L, Maia-Grondard A, Lapierre C, Jouanin L.

Mol Plant. 2011 Jan;4(1):70-82. doi: 10.1093/mp/ssq045. Epub 2010 Sep 9.

18.

Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.

Shi Y, Zhang X, Xu ZY, Li L, Zhang C, Schläppi M, Xu ZQ.

Plant Biol (Stuttg). 2011 Sep;13(5):731-9. doi: 10.1111/j.1438-8677.2010.00428.x. Epub 2011 Feb 5.

PMID:
21815977
19.

Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability.

Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barrière Y, Lapierre C, Jouanin L.

Planta. 2003 Jun;217(2):218-28. Epub 2003 Feb 22.

PMID:
12783329
20.

Consequences of antisense down-regulation of a lignification-specific peroxidase on leaf and vascular tissue in tobacco lines demonstrating enhanced enzymic saccharification.

Kavousi B, Daudi A, Cook CM, Joseleau JP, Ruel K, Devoto A, Bolwell GP, Blee KA.

Phytochemistry. 2010 Apr;71(5-6):531-42. doi: 10.1016/j.phytochem.2010.01.008. Epub 2010 Feb 17.

PMID:
20170931
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk