Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Mechanical stretch-induced activation of ROS/RNS signaling in striated muscle.

Ward CW, Prosser BL, Lederer WJ.

Antioxid Redox Signal. 2014 Feb 20;20(6):929-36. doi: 10.1089/ars.2013.5517. Epub 2014 Jan 3. Review.

2.

X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca²⁺]i.

Prosser BL, Khairallah RJ, Ziman AP, Ward CW, Lederer WJ.

J Mol Cell Cardiol. 2013 May;58:172-81. doi: 10.1016/j.yjmcc.2012.11.011. Epub 2012 Dec 6. Review.

3.

X-ROS signaling: rapid mechano-chemo transduction in heart.

Prosser BL, Ward CW, Lederer WJ.

Science. 2011 Sep 9;333(6048):1440-5. doi: 10.1126/science.1202768.

4.

Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling.

Trebak M, Ginnan R, Singer HA, Jourd'heuil D.

Antioxid Redox Signal. 2010 Mar 1;12(5):657-74. doi: 10.1089/ars.2009.2842. Review.

5.

ROS and RNS signaling in skeletal muscle: critical signals and therapeutic targets.

Michaelson LP, Iler C, Ward CW.

Annu Rev Nurs Res. 2013;31:367-87. doi: 10.1891/0739-6686.31.367. Review.

6.

Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle.

Lamb GD, Westerblad H.

J Physiol. 2011 May 1;589(Pt 9):2119-27. doi: 10.1113/jphysiol.2010.199059. Epub 2010 Nov 1. Review.

7.

X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch.

Prosser BL, Ward CW, Lederer WJ.

Cardiovasc Res. 2013 May 1;98(2):307-14. doi: 10.1093/cvr/cvt066. Epub 2013 Mar 21.

8.

Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres.

Martins AS, Shkryl VM, Nowycky MC, Shirokova N.

J Physiol. 2008 Jan 1;586(1):197-210. Epub 2007 Nov 1.

9.

NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII.

Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, Möllencamp J, Dybkova N, Islam T, Shah AM, Maier LS.

J Mol Cell Cardiol. 2014 Oct;75:206-15. doi: 10.1016/j.yjmcc.2014.07.011. Epub 2014 Jul 27.

PMID:
25073061
10.

Emerging roles of ROS/RNS in muscle function and fatigue.

Westerblad H, Allen DG.

Antioxid Redox Signal. 2011 Nov 1;15(9):2487-99. doi: 10.1089/ars.2011.3909. Epub 2011 May 25. Review.

PMID:
21375476
11.

Calcium signaling in insulin action on striated muscle.

Contreras-Ferrat A, Lavandero S, Jaimovich E, Klip A.

Cell Calcium. 2014 Nov;56(5):390-6. doi: 10.1016/j.ceca.2014.08.012. Epub 2014 Sep 6. Review.

PMID:
25224502
12.

Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers.

Shkryl VM, Martins AS, Ullrich ND, Nowycky MC, Niggli E, Shirokova N.

Pflugers Arch. 2009 Sep;458(5):915-28. doi: 10.1007/s00424-009-0670-2. Epub 2009 Apr 22.

PMID:
19387681
13.

Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications.

Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL.

J Biomed Sci. 2014 Jan 13;21:3. doi: 10.1186/1423-0127-21-3. Review.

14.

Redox regulation of sodium and calcium handling.

Wagner S, Rokita AG, Anderson ME, Maier LS.

Antioxid Redox Signal. 2013 Mar 20;18(9):1063-77. doi: 10.1089/ars.2012.4818. Epub 2012 Oct 3. Review.

15.

Modulation of cardiac ryanodine receptor activity by ROS and RNS.

Donoso P, Sanchez G, Bull R, Hidalgo C.

Front Biosci (Landmark Ed). 2011 Jan 1;16:553-67. Review.

PMID:
21196188
16.

Detection of reactive oxygen and reactive nitrogen species in skeletal muscle.

Murrant CL, Reid MB.

Microsc Res Tech. 2001 Nov 15;55(4):236-48. Review.

PMID:
11748862
17.

High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes.

Zhang C, Mo M, Ding W, Liu W, Yan D, Deng J, Luo X, Liu J.

J Mol Cell Cardiol. 2014 Sep;74:260-73. doi: 10.1016/j.yjmcc.2014.06.003. Epub 2014 Jun 14.

PMID:
24937603
18.

Redox signaling in hypertension.

Paravicini TM, Touyz RM.

Cardiovasc Res. 2006 Jul 15;71(2):247-58. Epub 2006 May 9. Review.

19.

Diapocynin, a dimer of the NADPH oxidase inhibitor apocynin, reduces ROS production and prevents force loss in eccentrically contracting dystrophic muscle.

Ismail HM, Scapozza L, Ruegg UT, Dorchies OM.

PLoS One. 2014 Oct 17;9(10):e110708. doi: 10.1371/journal.pone.0110708. eCollection 2014.

20.

Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.

Daiber A.

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):897-906. doi: 10.1016/j.bbabio.2010.01.032. Epub 2010 Feb 1. Review.

Items per page

Supplemental Content

Write to the Help Desk