Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 102

1.

Electron transfer from CdSe-ZnS core-shell quantum dots to cobalt(III) complexes.

Pal A, Srivastava S, Gupta R, Sapra S.

Phys Chem Chem Phys. 2013 Oct 14;15(38):15888-95. doi: 10.1039/c3cp51834e. Epub 2013 Aug 14.

PMID:
23945508
[PubMed]
2.

[Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].

Qu YQ, Zhang QB, Jing PT, Sun YJ, Zeng QH, Zhang YL, Kong XG.

Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Dec;29(12):3204-7. Chinese.

PMID:
20210132
[PubMed - in process]
3.

Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.

Rawalekar S, Kaniyankandy S, Verma S, Ghosh HN.

Chemphyschem. 2011 Jun 20;12(9):1729-35. doi: 10.1002/cphc.201100105. Epub 2011 May 12.

PMID:
21567706
[PubMed - indexed for MEDLINE]
4.

Super Sensitization: Grand Charge (Hole/Electron) Separation in ATC Dye Sensitized CdSe, CdSe/ZnS Type-I, and CdSe/CdTe Type-II Core-Shell Quantum Dots.

Debnath T, Maity P, Ghosh HN.

Chemistry. 2014 Sep 1. doi: 10.1002/chem.201403267. [Epub ahead of print]

PMID:
25179856
[PubMed - as supplied by publisher]
5.

Quantum dot photoluminescence quenching by Cr(III) complexes. Photosensitized reactions and evidence for a FRET mechanism.

Burks PT, Ostrowski AD, Mikhailovsky AA, Chan EM, Wagenknecht PS, Ford PC.

J Am Chem Soc. 2012 Aug 15;134(32):13266-75. doi: 10.1021/ja300771w. Epub 2012 Aug 1.

PMID:
22808899
[PubMed - indexed for MEDLINE]
6.

Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes.

Scott AM, Algar WR, Stewart MH, Trammell SA, Blanco-Canosa JB, Dawson PE, Deschamps JR, Goswami R, Oh E, Huston AL, Medintz IL.

J Phys Chem C Nanomater Interfaces. 2014 May 1;118(17):9239-9250. Epub 2014 Apr 22.

PMID:
24817922
[PubMed]
7.

Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots.

Torchynska TV.

Nanotechnology. 2009 Mar 4;20(9):095401. doi: 10.1088/0957-4484/20/9/095401. Epub 2009 Feb 6.

PMID:
19417487
[PubMed - indexed for MEDLINE]
8.

Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.

Wang M, Zhang M, Qian J, Zhao F, Shen L, Scholes GD, Winnik MA.

Langmuir. 2009 Oct 6;25(19):11732-40. doi: 10.1021/la900614e.

PMID:
19788225
[PubMed - indexed for MEDLINE]
9.

Quantum dot fluorescence quenching pathways with Cr(III) complexes. photosensitized NO production from trans-Cr(cyclam)(ONO)2+.

Neuman D, Ostrowski AD, Mikhailovsky AA, Absalonson RO, Strouse GF, Ford PC.

J Am Chem Soc. 2008 Jan 9;130(1):168-75. Epub 2007 Dec 13.

PMID:
18076165
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose.

Duong HD, Rhee JI.

Talanta. 2007 Oct 31;73(5):899-905. doi: 10.1016/j.talanta.2007.05.011. Epub 2007 May 18.

PMID:
19073118
[PubMed]
11.

Quantum dots acting as energy acceptors with organic dyes as donors in solution.

Xu H, Huang X, Zhang W, Chen G, Zhu W, Zhong X.

Chemphyschem. 2010 Oct 4;11(14):3167-71. doi: 10.1002/cphc.201000287.

PMID:
20872922
[PubMed - indexed for MEDLINE]
12.

Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins.

Hering VR, Gibson G, Schumacher RI, Faljoni-Alario A, Politi MJ.

Bioconjug Chem. 2007 Nov-Dec;18(6):1705-8. Epub 2007 Sep 28.

PMID:
17900163
[PubMed - indexed for MEDLINE]
13.

Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.

Zhang W, Chen G, Wang J, Ye BC, Zhong X.

Inorg Chem. 2009 Oct 19;48(20):9723-31. doi: 10.1021/ic9010949.

PMID:
19772326
[PubMed - indexed for MEDLINE]
14.

The influence of surface trapping and dark states on the fluorescence emission efficiency and lifetime of CdSe and CdSe/ZnS quantum dots.

Gong HM, Zhou ZK, Song H, Hao ZH, Han JB, Zhai YY, Xiao S, Wang QQ.

J Fluoresc. 2007 Nov;17(6):715-20. Epub 2007 Aug 10.

PMID:
17690953
[PubMed]
15.

Electron transfer dynamics from single CdSe/ZnS quantum dots to TiO2 nanoparticles.

Jin S, Lian T.

Nano Lett. 2009 Jun;9(6):2448-54. doi: 10.1021/nl9011744.

PMID:
19453136
[PubMed]
16.

CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes.

Deka S, Quarta A, Lupo MG, Falqui A, Boninelli S, Giannini C, Morello G, De Giorgi M, Lanzani G, Spinella C, Cingolani R, Pellegrino T, Manna L.

J Am Chem Soc. 2009 Mar 4;131(8):2948-58. doi: 10.1021/ja808369e.

PMID:
19206236
[PubMed - indexed for MEDLINE]
17.

Intermittent electron transfer activity from single CdSe/ZnS quantum dots.

Issac A, Jin S, Lian T.

J Am Chem Soc. 2008 Aug 27;130(34):11280-1. doi: 10.1021/ja8043085. Epub 2008 Aug 5.

PMID:
18680292
[PubMed]
18.

Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.

Zhu H, Song N, Lian T.

J Am Chem Soc. 2011 Jun 8;133(22):8762-71. doi: 10.1021/ja202752s. Epub 2011 May 17.

PMID:
21534569
[PubMed - indexed for MEDLINE]
19.

64Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-quantum dot-vascular endothelial growth factor .

Zhang H.

Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013.
2008 Jul 01 [updated 2008 Aug 12].

PMID:
20641777
[PubMed]
Books & Documents
20.

Preparation and characterization of thiacalix[4]arene coated water-soluble CdSe/ZnS quantum dots as a fluorescent probe for Cu2+ ions.

Jin T, Fujii F, Yamada E, Nodasaka Y, Kinjo M.

Comb Chem High Throughput Screen. 2007 Jul;10(6):473-9.

PMID:
17896943
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk