Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93


Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury.

Fenrich KK, Weber P, Rougon G, Debarbieux F.

J Physiol. 2013 Oct 1;591(19):4895-902. doi: 10.1113/jphysiol.2013.256388. Epub 2013 Aug 5.


High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury.

Evans TA, Barkauskas DS, Myers JT, Hare EG, You JQ, Ransohoff RM, Huang AY, Silver J.

Exp Neurol. 2014 Apr;254:109-20. doi: 10.1016/j.expneurol.2014.01.013. Epub 2014 Jan 24.


An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

Okada SL, Stivers NS, Stys PK, Stirling DP.

J Vis Exp. 2014 Nov 25;(93):e52173. doi: 10.3791/52173.


Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death.

Greenhalgh AD, David S.

J Neurosci. 2014 Apr 30;34(18):6316-22. doi: 10.1523/JNEUROSCI.4912-13.2014.


Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model.

Zhang Y, Zhang L, Shen J, Chen C, Mao Z, Li W, Gan WB, Tang P.

Spine (Phila Pa 1976). 2014 Apr 15;39(8):E493-9. doi: 10.1097/BRS.0000000000000218.


Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice.

Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M.

PLoS Med. 2009 Jul;6(7):e1000113. doi: 10.1371/journal.pmed.1000113. Epub 2009 Jul 28.


Mobilisation of the splenic monocyte reservoir and peripheral CX₃CR1 deficiency adversely affects recovery from spinal cord injury.

Blomster LV, Brennan FH, Lao HW, Harle DW, Harvey AR, Ruitenberg MJ.

Exp Neurol. 2013 Sep;247:226-40. doi: 10.1016/j.expneurol.2013.05.002. Epub 2013 May 9.


Differential detection and distribution of microglial and hematogenous macrophage populations in the injured spinal cord of lys-EGFP-ki transgenic mice.

Mawhinney LA, Thawer SG, Lu WY, Rooijen Nv, Weaver LC, Brown A, Dekaban GA.

J Neuropathol Exp Neurol. 2012 Mar;71(3):180-97. doi: 10.1097/NEN.0b013e3182479b41.


The cellular inflammatory response in human spinal cords after injury.

Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC.

Brain. 2006 Dec;129(Pt 12):3249-69. Epub 2006 Oct 28.


Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions.

Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J.

J Neurosci. 2008 Sep 17;28(38):9330-41. doi: 10.1523/JNEUROSCI.2488-08.2008.


Robust axonal growth and a blunted macrophage response are associated with impaired functional recovery after spinal cord injury in the MRL/MpJ mouse.

Kostyk SK, Popovich PG, Stokes BT, Wei P, Jakeman LB.

Neuroscience. 2008 Oct 15;156(3):498-514. doi: 10.1016/j.neuroscience.2008.08.013. Epub 2008 Aug 19.


Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.

Frisén J, Haegerstrand A, Fried K, Piehl F, Cullheim S, Risling M.

Exp Neurol. 1994 Oct;129(2):183-93.


Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.

Collyer E, Catenaccio A, Lemaitre D, Diaz P, Valenzuela V, Bronfman F, Court FA.

Exp Neurol. 2014 Nov;261:451-61. doi: 10.1016/j.expneurol.2014.07.014. Epub 2014 Jul 28.


Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury.

Du K, Zheng S, Zhang Q, Li S, Gao X, Wang J, Jiang L, Liu K.

J Neurosci. 2015 Jul 1;35(26):9754-63. doi: 10.1523/JNEUROSCI.3637-14.2015.


Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice.

Heuss ND, Pierson MJ, Montaniel KR, McPherson SW, Lehmann U, Hussong SA, Ferrington DA, Low WC, Gregerson DS.

J Neuroinflammation. 2014 Aug 13;11:143. doi: 10.1186/s12974-014-0143-1.


Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord.

Uckermann O, Galli R, Beiermeister R, Sitoci-Ficici KH, Later R, Leipnitz E, Neuwirth A, Chavakis T, Koch E, Schackert G, Steiner G, Kirsch M.

Biomed Res Int. 2015;2015:859084. doi: 10.1155/2015/859084. Epub 2015 Aug 18.


Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury.

Nishimura S, Yasuda A, Iwai H, Takano M, Kobayashi Y, Nori S, Tsuji O, Fujiyoshi K, Ebise H, Toyama Y, Okano H, Nakamura M.

Mol Brain. 2013 Jan 8;6:3. doi: 10.1186/1756-6606-6-3.


Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo.

Peterson SL, Nguyen HX, Mendez OA, Anderson AJ.

J Neurosci. 2015 Mar 11;35(10):4332-49. doi: 10.1523/JNEUROSCI.4473-12.2015.


Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury.

White RE, Rao M, Gensel JC, McTigue DM, Kaspar BK, Jakeman LB.

J Neurosci. 2011 Oct 19;31(42):15173-87. doi: 10.1523/JNEUROSCI.3441-11.2011.


Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.

Zou Y, Stagi M, Wang X, Yigitkanli K, Siegel CS, Nakatsu F, Cafferty WB, Strittmatter SM.

J Neurosci. 2015 Jul 22;35(29):10429-39. doi: 10.1523/JNEUROSCI.1718-15.2015.

Items per page

Supplemental Content

Write to the Help Desk