Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 126

Similar articles for PubMed (Select 23907182)

1.

Superior power density solid oxide fuel cells by enlarging the three-phase boundary region of a NiO-Ce0.8Gd0.2O1.9 composite anode through optimized surface structure.

Yoon D, Su Q, Wang H, Manthiram A.

Phys Chem Chem Phys. 2013 Sep 28;15(36):14966-72. doi: 10.1039/c3cp52679h.

PMID:
23907182
2.

Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film.

Chen Y, Zhang Y, Baker J, Majumdar P, Yang Z, Han M, Chen F.

ACS Appl Mater Interfaces. 2014 Apr 9;6(7):5130-6. doi: 10.1021/am5003662. Epub 2014 Mar 21.

PMID:
24621230
3.

The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode.

Li Y, Luo ZY, Yu CJ, Luo D, Xu ZA, Cen KF.

J Zhejiang Univ Sci B. 2005 Nov;6(11):1124-9.

4.

Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells.

Kim JY, Kim JH, Choi HW, Kim KH, Park SJ.

J Nanosci Nanotechnol. 2014 Aug;14(8):6399-403.

PMID:
25936125
5.

Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.

Liu T, Ren C, Fang S, Wang Y, Chen F.

ACS Appl Mater Interfaces. 2014 Nov 12;6(21):18853-60. doi: 10.1021/am5046907. Epub 2014 Oct 29.

PMID:
25313919
6.

Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells.

Shin TH, Ida S, Ishihara T.

J Am Chem Soc. 2011 Dec 7;133(48):19399-407. doi: 10.1021/ja206278f. Epub 2011 Nov 10.

PMID:
22011010
7.
8.

Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3-δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells.

Yang J, Molouk AF, Okanishi T, Muroyama H, Matsui T, Eguchi K.

ACS Appl Mater Interfaces. 2015 Apr 8;7(13):7406-12. doi: 10.1021/acsami.5b01048. Epub 2015 Mar 24.

PMID:
25804559
9.

Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells.

Guo T, Dong X, Shirolkar MM, Song X, Wang M, Zhang L, Li M, Wang H.

ACS Appl Mater Interfaces. 2014 Sep 24;6(18):16131-9. doi: 10.1021/am504148m. Epub 2014 Sep 8.

PMID:
25162913
10.

Nanoporous Ni-Ce0.8Gd0.2O1.9-x thin film cermet SOFC anodes prepared by pulsed laser deposition.

Infortuna A, Harvey AS, Muecke UP, Gauckler LJ.

Phys Chem Chem Phys. 2009 May 21;11(19):3663-70. doi: 10.1039/b821473e. Epub 2009 Mar 20.

PMID:
19421477
11.

Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

Xiao G, Wang S, Lin Y, Zhang Y, An K, Chen F.

ACS Appl Mater Interfaces. 2014 Nov 26;6(22):19990-6. doi: 10.1021/am5055417. Epub 2014 Nov 11.

PMID:
25333295
12.

Three-dimensional microstructure of high-performance pulsed-laser deposited Ni-YSZ SOFC anodes.

Kennouche D, Hong J, Noh HS, Son JW, Barnett SA.

Phys Chem Chem Phys. 2014 Aug 7;16(29):15249-55. doi: 10.1039/c4cp02251c. Epub 2014 Jun 18.

PMID:
24938312
13.

Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells.

Shin TH, Okamoto Y, Ida S, Ishihara T.

Chemistry. 2012 Sep 10;18(37):11695-702. doi: 10.1002/chem.201200536. Epub 2012 Aug 2.

PMID:
22865585
14.

Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.

Su C, Shao Z, Lin Y, Wu Y, Wang H.

Phys Chem Chem Phys. 2012 Sep 21;14(35):12173-81. doi: 10.1039/c2cp41166k. Epub 2012 Aug 7.

PMID:
22870505
15.

Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase.

Wang F, Wang W, Qu J, Zhong Y, Tade MO, Shao Z.

Environ Sci Technol. 2014 Oct 21;48(20):12427-34. doi: 10.1021/es503603w. Epub 2014 Oct 1.

PMID:
25229807
16.

Effect of interlayer on structure and performance of anode-supported SOFC single cells.

Eom TW, Yang HK, Kim KH, Yoon HH, Kim JS, Park SJ.

Ultramicroscopy. 2008 Sep;108(10):1283-7. doi: 10.1016/j.ultramic.2008.04.069. Epub 2008 May 15.

PMID:
18571861
17.

High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes.

Chueh WC, Hao Y, Jung W, Haile SM.

Nat Mater. 2011 Dec 4;11(2):155-61. doi: 10.1038/nmat3184.

PMID:
22138788
18.

A high-performance cathode for the next generation of solid-oxide fuel cells.

Shao Z, Haile SM.

Nature. 2004 Sep 9;431(7005):170-3.

PMID:
15356627
19.

High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.

Kirtley JD, Halat DM, McIntyre MD, Eigenbrodt BC, Walker RA.

Anal Chem. 2012 Nov 20;84(22):9745-53. doi: 10.1021/ac301504g. Epub 2012 Oct 31.

PMID:
23046116
20.

Triple-phase boundary and power density enhancement in thin solid oxide fuel cells by controlled etching of the nickel anode.

Ebrahim R, Yeleuov M, Issova A, Tokmoldin S, Ignatiev A.

Nanoscale Res Lett. 2014 Jun 9;9(1):286. doi: 10.1186/1556-276X-9-286. eCollection 2014.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk