Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 85

Similar articles for PubMed (Select 23900185)

1.

Alternative ear-canal measures related to absorbance.

Neely ST, Stenfelt S, Schairer KS.

Ear Hear. 2013 Jul;34 Suppl 1:72S-77S. doi: 10.1097/AUD.0b013e31829c7229. Review.

2.

An overview of wideband immittance measurements techniques and terminology: you say absorbance, I say reflectance.

Rosowski JJ, Stenfelt S, Lilly D.

Ear Hear. 2013 Jul;34 Suppl 1:9S-16S. doi: 10.1097/AUD.0b013e31829d5a14. Review.

3.

Factors that introduce intrasubject variability into ear-canal absorbance measurements.

Voss SE, Stenfelt S, Neely ST, Rosowski JJ.

Ear Hear. 2013 Jul;34 Suppl 1:60S-64S. doi: 10.1097/AUD.0b013e31829cfd64. Review.

4.
5.

Measurement of acoustic impedance and reflectance in the human ear canal.

Voss SE, Allen JB.

J Acoust Soc Am. 1994 Jan;95(1):372-84.

PMID:
8120248
6.

Comparison between intensity and pressure as measures of sound level in the ear canal.

Neely ST, Gorga MP.

J Acoust Soc Am. 1998 Nov;104(5):2925-34.

PMID:
9821338
7.

Middle ear pathology can affect the ear-canal sound pressure generated by audiologic earphones.

Voss SE, Rosowski JJ, Merchant SN, Thornton AR, Shera CA, Peake WT.

Ear Hear. 2000 Aug;21(4):265-74.

PMID:
10981602
8.

Comparison of in-situ calibration methods for quantifying input to the middle ear.

Lewis JD, McCreery RW, Neely ST, Stelmachowicz PG.

J Acoust Soc Am. 2009 Dec;126(6):3114-24. doi: 10.1121/1.3243310.

9.

An analysis of the acoustic input impedance of the ear.

Withnell RH, Gowdy LE.

J Assoc Res Otolaryngol. 2013 Oct;14(5):611-22. doi: 10.1007/s10162-013-0407-y. Epub 2013 Aug 6.

10.
11.

Pediatric applications of wideband acoustic immittance measures.

Hunter LL, Prieve BA, Kei J, Sanford CA.

Ear Hear. 2013 Jul;34 Suppl 1:36S-42S. doi: 10.1097/AUD.0b013e31829d5158. Review. Erratum in: Ear Hear. 2014 Mar-Apr;35(2):287.

PMID:
23900177
12.

Wideband reflectance tympanometry in normal adults.

Margolis RH, Saly GL, Keefe DH.

J Acoust Soc Am. 1999 Jul;106(1):265-80.

PMID:
10420621
13.

Assessment of ear disorders using power reflectance.

Nakajima HH, Rosowski JJ, Shahnaz N, Voss SE.

Ear Hear. 2013 Jul;34 Suppl 1:48S-53S. doi: 10.1097/AUD.0b013e31829c964d. Review.

14.

Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.

Voss SE, Rosowski JJ, Shera CA, Peake WT.

J Acoust Soc Am. 2000 Mar;107(3):1548-65.

PMID:
10738809
15.

Further assessment of forward pressure level for in situ calibration.

Scheperle RA, Goodman SS, Neely ST.

J Acoust Soc Am. 2011 Dec;130(6):3882-92. doi: 10.1121/1.3655878.

16.

Simultaneous measurement of middle-ear input impedance and forward/reverse transmission in cat.

Voss SE, Shera CA.

J Acoust Soc Am. 2004 Oct;116(4 Pt 1):2187-98.

PMID:
15532651
17.

Wideband absorbance tympanometry using pressure sweeps: system development and results on adults with normal hearing.

Liu YW, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP, Keefe DH.

J Acoust Soc Am. 2008 Dec;124(6):3708-19. doi: 10.1121/1.3001712.

18.

Effects of ear-canal static pressure on pure-tone thresholds and wideband acoustic immittance.

Feeney MP, Sanford CA, Putterman DB.

J Am Acad Audiol. 2014 May;25(5):462-70. doi: 10.3766/jaaa.25.5.5.

PMID:
25257720
19.
20.

Sources of variability in reflectance measurements on normal cadaver ears.

Voss SE, Horton NJ, Woodbury RR, Sheffield KN.

Ear Hear. 2008 Aug;29(4):651-65. doi: 10.1097/AUD.0b013e318174f07c.

PMID:
18600136
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk