Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

In vivo physiological and transcriptional profiling reveals host responses to Clostridium difficile toxin A and toxin B.

D'Auria KM, Kolling GL, Donato GM, Warren CA, Gray MC, Hewlett EL, Papin JA.

Infect Immun. 2013 Oct;81(10):3814-24. doi: 10.1128/IAI.00869-13. Epub 2013 Jul 29.

2.

Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure.

Hirota SA, Iablokov V, Tulk SE, Schenck LP, Becker H, Nguyen J, Al Bashir S, Dingle TC, Laing A, Liu J, Li Y, Bolstad J, Mulvey GL, Armstrong GD, MacNaughton WK, Muruve DA, MacDonald JA, Beck PL.

Infect Immun. 2012 Dec;80(12):4474-84. doi: 10.1128/IAI.00933-12. Epub 2012 Oct 8.

3.

Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections.

Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, Howarth P, Clare S, Cunningham B, Sambol SP, Cheknis A, Figueroa I, Johnson S, Gerding D, Rood JI, Dougan G, Lawley TD, Lyras D.

MBio. 2015 Jun 2;6(3):e00551. doi: 10.1128/mBio.00551-15.

4.

Systems analysis of the transcriptional response of human ileocecal epithelial cells to Clostridium difficile toxins and effects on cell cycle control.

D'Auria KM, Donato GM, Gray MC, Kolling GL, Warren CA, Cave LM, Solga MD, Lannigan JA, Papin JA, Hewlett EL.

BMC Syst Biol. 2012 Jan 6;6:2. doi: 10.1186/1752-0509-6-2.

5.

Effects of Clostridium difficile toxin A and B on human T lymphocyte migration.

Wu D, Joyee AG, Nandagopal S, Lopez M, Ma X, Berry J, Lin F.

Toxins (Basel). 2013 May 3;5(5):926-38. doi: 10.3390/toxins5050926.

6.

High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types.

D'Auria KM, Bloom MJ, Reyes Y, Gray MC, van Opstal EJ, Papin JA, Hewlett EL.

BMC Microbiol. 2015 Feb 4;15:7. doi: 10.1186/s12866-015-0361-4.

7.

The repetitive oligopeptide sequences modulate cytopathic potency but are not crucial for cellular uptake of Clostridium difficile toxin A.

Olling A, Goy S, Hoffmann F, Tatge H, Just I, Gerhard R.

PLoS One. 2011 Mar 18;6(3):e17623. doi: 10.1371/journal.pone.0017623.

8.

The protective effect of recombinant Lactococcus lactis oral vaccine on a Clostridium difficile-infected animal model.

Yang XQ, Zhao YG, Chen XQ, Jiang B, Sun DY.

BMC Gastroenterol. 2013 Jul 17;13:117. doi: 10.1186/1471-230X-13-117.

9.

New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection.

Persson S, Torpdahl M, Olsen KE.

Clin Microbiol Infect. 2008 Nov;14(11):1057-64. doi: 10.1111/j.1469-0691.2008.02092.x. Erratum in: Clin Microbiol Infect. 2009 Mar;15(3):296.

10.

An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium difficile induces protective antibody responses in vivo.

Baliban SM, Michael A, Shammassian B, Mudakha S, Khan AS, Cocklin S, Zentner I, Latimer BP, Bouillaut L, Hunter M, Marx P, Sardesai NY, Welles SL, Jacobson JM, Weiner DB, Kutzler MA.

Infect Immun. 2014 Oct;82(10):4080-91. doi: 10.1128/IAI.01950-14. Epub 2014 Jul 14.

11.

Systemic dissemination of Clostridium difficile toxins A and B is associated with severe, fatal disease in animal models.

Steele J, Chen K, Sun X, Zhang Y, Wang H, Tzipori S, Feng H.

J Infect Dis. 2012 Feb 1;205(3):384-91. doi: 10.1093/infdis/jir748. Epub 2011 Dec 5.

12.

Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium.

Yang G, Zhou B, Wang J, He X, Sun X, Nie W, Tzipori S, Feng H.

BMC Microbiol. 2008 Nov 6;8:192. doi: 10.1186/1471-2180-8-192.

13.

The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD.

McKee RW, Mangalea MR, Purcell EB, Borchardt EK, Tamayo R.

J Bacteriol. 2013 Nov;195(22):5174-85. doi: 10.1128/JB.00501-13. Epub 2013 Sep 13.

14.

The enterotoxicity of Clostridium difficile toxins.

Sun X, Savidge T, Feng H.

Toxins (Basel). 2010 Jul;2(7):1848-80. doi: 10.3390/toxins2071848. Epub 2010 Jul 14. Review.

15.

Contribution of adenosine A(2B) receptors in Clostridium difficile intoxication and infection.

Warren CA, Li Y, Calabrese GM, Freire RS, Zaja-Milatovic S, van Opstal E, Figler RA, Linden J, Guerrant RL.

Infect Immun. 2012 Dec;80(12):4463-73. doi: 10.1128/IAI.00782-12. Epub 2012 Oct 8.

16.

Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease.

Sambol SP, Merrigan MM, Lyerly D, Gerding DN, Johnson S.

Infect Immun. 2000 Oct;68(10):5480-7.

17.

Clostridium difficile toxins: mechanism of action and role in disease.

Voth DE, Ballard JD.

Clin Microbiol Rev. 2005 Apr;18(2):247-63. Review.

18.

Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.

Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK, Johnson S, Gerding DN, Vedantam G.

J Bacteriol. 2010 Oct;192(19):4904-11. doi: 10.1128/JB.00445-10. Epub 2010 Jul 30.

19.

Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.

Olling A, Seehase S, Minton NP, Tatge H, Schröter S, Kohlscheen S, Pich A, Just I, Gerhard R.

Microb Pathog. 2012 Jan;52(1):92-100. doi: 10.1016/j.micpath.2011.10.009. Epub 2011 Nov 17.

20.

Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity.

LaFrance ME, Farrow MA, Chandrasekaran R, Sheng J, Rubin DH, Lacy DB.

Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7073-8. doi: 10.1073/pnas.1500791112. Epub 2015 May 18.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk