Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 109

1.

Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism.

Nguyen GT, Schaefer S, Gertz M, Weyand M, Steegborn C.

Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1423-32. doi: 10.1107/S0907444913015448. Epub 2013 Jul 17.

PMID:
23897466
[PubMed - indexed for MEDLINE]
2.

Synthesis of carba-NAD and the structures of its ternary complexes with SIRT3 and SIRT5.

Szczepankiewicz BG, Dai H, Koppetsch KJ, Qian D, Jiang F, Mao C, Perni RB.

J Org Chem. 2012 Sep 7;77(17):7319-29. doi: 10.1021/jo301067e. Epub 2012 Aug 17.

PMID:
22849721
[PubMed - indexed for MEDLINE]
3.

Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.

Zhao K, Harshaw R, Chai X, Marmorstein R.

Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8563-8. Epub 2004 May 18.

PMID:
15150415
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Structure and biochemical functions of SIRT6.

Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM.

J Biol Chem. 2011 Apr 22;286(16):14575-87. doi: 10.1074/jbc.M111.218990. Epub 2011 Mar 1.

PMID:
21362626
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism.

Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C.

Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):E2772-81. doi: 10.1073/pnas.1303628110. Epub 2013 Jul 9.

PMID:
23840057
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

A molecular mechanism for direct sirtuin activation by resveratrol.

Gertz M, Nguyen GT, Fischer F, Suenkel B, Schlicker C, Fränzel B, Tomaschewski J, Aladini F, Becker C, Wolters D, Steegborn C.

PLoS One. 2012;7(11):e49761. doi: 10.1371/journal.pone.0049761. Epub 2012 Nov 21.

PMID:
23185430
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

Crystal structure analysis of human Sirt2 and its ADP-ribose complex.

Moniot S, Schutkowski M, Steegborn C.

J Struct Biol. 2013 May;182(2):136-43. doi: 10.1016/j.jsb.2013.02.012. Epub 2013 Feb 26.

PMID:
23454361
[PubMed - indexed for MEDLINE]
8.

Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin.

Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN.

Structure. 2007 Mar;15(3):377-89.

PMID:
17355872
[PubMed - indexed for MEDLINE]
Free Article
9.

Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.

Hoff KG, Avalos JL, Sens K, Wolberger C.

Structure. 2006 Aug;14(8):1231-40.

PMID:
16905097
[PubMed - indexed for MEDLINE]
Free Article
10.

Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.

Du J, Jiang H, Lin H.

Biochemistry. 2009 Apr 7;48(13):2878-90. doi: 10.1021/bi802093g.

PMID:
19220062
[PubMed - indexed for MEDLINE]
11.

The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition.

Zhao X, Allison D, Condon B, Zhang F, Gheyi T, Zhang A, Ashok S, Russell M, MacEwan I, Qian Y, Jamison JA, Luz JG.

J Med Chem. 2013 Feb 14;56(3):963-9. doi: 10.1021/jm301431y. Epub 2013 Jan 29.

PMID:
23311358
[PubMed - indexed for MEDLINE]
12.
13.

Crystal structures of sirt3 complexes with 4'-bromo-resveratrol reveal binding sites and inhibition mechanism.

Nguyen GT, Gertz M, Steegborn C.

Chem Biol. 2013 Nov 21;20(11):1375-85. doi: 10.1016/j.chembiol.2013.09.019. Epub 2013 Nov 7.

PMID:
24211137
[PubMed - in process]
14.

Structure and function of an ADP-ribose-dependent transcriptional regulator of NAD metabolism.

Huang N, De Ingeniis J, Galeazzi L, Mancini C, Korostelev YD, Rakhmaninova AB, Gelfand MS, Rodionov DA, Raffaelli N, Zhang H.

Structure. 2009 Jul 15;17(7):939-51. doi: 10.1016/j.str.2009.05.012.

PMID:
19604474
[PubMed - indexed for MEDLINE]
Free PMC Article
15.

The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis.

Ruf A, Rolli V, de Murcia G, Schulz GE.

J Mol Biol. 1998 Apr 24;278(1):57-65.

PMID:
9571033
[PubMed - indexed for MEDLINE]
16.
17.

SIRT3 substrate specificity determined by peptide arrays and machine learning.

Smith BC, Settles B, Hallows WC, Craven MW, Denu JM.

ACS Chem Biol. 2011 Feb 18;6(2):146-57. doi: 10.1021/cb100218d. Epub 2010 Nov 1.

PMID:
20945913
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.

Sauve AA, Schramm VL.

Curr Med Chem. 2004 Apr;11(7):807-26. Review.

PMID:
15078167
[PubMed - indexed for MEDLINE]
19.

NAD and ADP-ribose metabolism in mitochondria.

Dölle C, Rack JG, Ziegler M.

FEBS J. 2013 Aug;280(15):3530-41. doi: 10.1111/febs.12304. Epub 2013 Jun 3. Review.

PMID:
23617329
[PubMed - indexed for MEDLINE]
20.

Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3.

Disch JS, Evindar G, Chiu CH, Blum CA, Dai H, Jin L, Schuman E, Lind KE, Belyanskaya SL, Deng J, Coppo F, Aquilani L, Graybill TL, Cuozzo JW, Lavu S, Mao C, Vlasuk GP, Perni RB.

J Med Chem. 2013 May 9;56(9):3666-79. doi: 10.1021/jm400204k. Epub 2013 Apr 29.

PMID:
23570514
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk