Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

High affinity glycodendrimers for the lectin LecB from Pseudomonas aeruginosa.

Berthet N, Thomas B, Bossu I, Dufour E, Gillon E, Garcia J, Spinelli N, Imberty A, Dumy P, Renaudet O.

Bioconjug Chem. 2013 Sep 18;24(9):1598-611. doi: 10.1021/bc400239m. Epub 2013 Aug 26.

PMID:
23888914
2.

Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB.

Johansson EM, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels KM, Diggle SP, Cámara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger KE, Darbre T, Reymond JL.

Chem Biol. 2008 Dec 22;15(12):1249-57. doi: 10.1016/j.chembiol.2008.10.009.

3.

Glycopeptide dendrimers with high affinity for the fucose-binding lectin LecB from Pseudomonas aeruginosa.

Kolomiets E, Swiderska MA, Kadam RU, Johansson EM, Jaeger KE, Darbre T, Reymond JL.

ChemMedChem. 2009 Apr;4(4):562-9. doi: 10.1002/cmdc.200800380.

PMID:
19189366
4.

Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors.

Reymond JL, Bergmann M, Darbre T.

Chem Soc Rev. 2013 Jun 7;42(11):4814-22. doi: 10.1039/c3cs35504g. Epub 2013 Feb 1. Review.

PMID:
23370573
5.

Neoglycopeptide dendrimer libraries as a source of lectin binding ligands.

Kolomiets E, Johansson EM, Renaudet O, Darbre T, Reymond JL.

Org Lett. 2007 Apr 12;9(8):1465-8. Epub 2007 Mar 13.

PMID:
17352485
6.

Combining glycomimetic and multivalent strategies toward designing potent bacterial lectin inhibitors.

Chabre YM, Giguère D, Blanchard B, Rodrigue J, Rocheleau S, Neault M, Rauthu S, Papadopoulos A, Arnold AA, Imberty A, Roy R.

Chemistry. 2011 May 27;17(23):6545-62. doi: 10.1002/chem.201003402. Epub 2011 Apr 26.

PMID:
21523837
7.

Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation.

Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger KE.

Microbiology. 2005 May;151(Pt 5):1313-23.

PMID:
15870442
8.

Structure-based optimization of the terminal tripeptide in glycopeptide dendrimer inhibitors of Pseudomonas aeruginosa biofilms targeting LecA.

Kadam RU, Bergmann M, Garg D, Gabrieli G, Stocker A, Darbre T, Reymond JL.

Chemistry. 2013 Dec 9;19(50):17054-63. doi: 10.1002/chem.201302587. Epub 2013 Nov 4.

PMID:
24307364
9.

Specific association of lectin LecB with the surface of Pseudomonas aeruginosa: role of outer membrane protein OprF.

Funken H, Bartels KM, Wilhelm S, Brocker M, Bott M, Bains M, Hancock RE, Rosenau F, Jaeger KE.

PLoS One. 2012;7(10):e46857. doi: 10.1371/journal.pone.0046857. Epub 2012 Oct 8.

10.

Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins.

Ligeour C, Dupin L, Angeli A, Vergoten G, Vidal S, Meyer A, Souteyrand E, Vasseur JJ, Chevolot Y, Morvan F.

Org Biomol Chem. 2015 Dec 14;13(46):11244-54. doi: 10.1039/c5ob01445j. Epub 2015 Sep 28.

PMID:
26412676
11.

A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms.

Kadam RU, Bergmann M, Hurley M, Garg D, Cacciarini M, Swiderska MA, Nativi C, Sattler M, Smyth AR, Williams P, Cámara M, Stocker A, Darbre T, Reymond JL.

Angew Chem Int Ed Engl. 2011 Nov 4;50(45):10631-5. doi: 10.1002/anie.201104342. Epub 2011 Sep 14. No abstract available.

12.

Discovery of two classes of potent glycomimetic inhibitors of Pseudomonas aeruginosa LecB with distinct binding modes.

Hauck D, Joachim I, Frommeyer B, Varrot A, Philipp B, Möller HM, Imberty A, Exner TE, Titz A.

ACS Chem Biol. 2013 Aug 16;8(8):1775-84. doi: 10.1021/cb400371r. Epub 2013 Jun 28.

PMID:
23719508
13.

Synthesis of mannoheptose derivatives and their evaluation as inhibitors of the lectin LecB from the opportunistic pathogen Pseudomonas aeruginosa.

Hofmann A, Sommer R, Hauck D, Stifel J, Göttker-Schnetmann I, Titz A.

Carbohydr Res. 2015 Aug 14;412:34-42. doi: 10.1016/j.carres.2015.04.010. Epub 2015 May 5.

PMID:
26004349
14.

Glycopeptide dendrimers for biomedical applications.

Darbre T, Reymond JL.

Curr Top Med Chem. 2008;8(14):1286-93. Review.

PMID:
18855709
15.

Glycosylation is required for outer membrane localization of the lectin LecB in Pseudomonas aeruginosa.

Bartels KM, Funken H, Knapp A, Brocker M, Bott M, Wilhelm S, Jaeger KE, Rosenau F.

J Bacteriol. 2011 Mar;193(5):1107-13. doi: 10.1128/JB.01507-10. Epub 2011 Jan 7.

16.

Rational design and synthesis of optimized glycoclusters for multivalent lectin-carbohydrate interactions: influence of the linker arm.

Cecioni S, Praly JP, Matthews SE, Wimmerová M, Imberty A, Vidal S.

Chemistry. 2012 May 14;18(20):6250-63. doi: 10.1002/chem.201200010. Epub 2012 Apr 4.

PMID:
22488581
17.

Synthesis of a selective inhibitor of a fucose binding bacterial lectin from Burkholderia ambifaria.

Richichi B, Imberty A, Gillon E, Bosco R, Sutkeviciute I, Fieschi F, Nativi C.

Org Biomol Chem. 2013 Jun 28;11(24):4086-94. doi: 10.1039/c3ob40520f.

PMID:
23673818
18.

Synthesis of multivalent carbohydrate-centered glycoclusters as nanomolar ligands of the bacterial lectin LecA from Pseudomonas aeruginosa.

Gening ML, Titov DV, Cecioni S, Audfray A, Gerbst AG, Tsvetkov YE, Krylov VB, Imberty A, Nifantiev NE, Vidal S.

Chemistry. 2013 Jul 8;19(28):9272-85. doi: 10.1002/chem.201300135. Epub 2013 Jun 11.

PMID:
23761096
19.

A biophysical study with carbohydrate derivatives explains the molecular basis of monosaccharide selectivity of the Pseudomonas aeruginosa lectin LecB.

Sommer R, Exner TE, Titz A.

PLoS One. 2014 Nov 21;9(11):e112822. doi: 10.1371/journal.pone.0112822. eCollection 2014.

20.

Interactions of the fucose-specific Pseudomonas aeruginosa lectin, PA-IIL, with mammalian glycoconjugates bearing polyvalent Lewis(a) and ABH blood group glycotopes.

Wu AM, Wu JH, Singh T, Liu JH, Tsai MS, Gilboa-Garber N.

Biochimie. 2006 Oct;88(10):1479-92. Epub 2006 May 24.

PMID:
16762477
Items per page

Supplemental Content

Write to the Help Desk