Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 117

Similar articles for PubMed (Select 23888108)

1.

Molecular evolution and functional divergence of soluble starch synthase genes in cassava (manihot esculenta crantz).

Yang Z, Wang Y, Xu S, Xu C, Yan C.

Evol Bioinform Online. 2013 Jul 3;9:239-49. doi: 10.4137/EBO.S11991. Print 2013.

2.

Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments.

Pei J, Wang H, Xia Z, Liu C, Chen X, Ma P, Lu C, Wang W.

Mol Cell Biochem. 2015 May 16. [Epub ahead of print]

PMID:
25981533
3.

Composition, structure, physicochemical properties, and modifications of cassava starch.

Zhu F.

Carbohydr Polym. 2015 May 20;122:456-80. doi: 10.1016/j.carbpol.2014.10.063. Epub 2014 Oct 30. Review.

PMID:
25817690
4.

High pressure intensification of cassava resistant starch (RS3) yields.

Lertwanawatana P, Frazier RA, Niranjan K.

Food Chem. 2015 Aug 15;181:85-93. doi: 10.1016/j.foodchem.2015.02.005. Epub 2015 Feb 21.

PMID:
25794725
5.

An overview of protein identification studies in cassava.

Batista de Souza CR, dos Reis SP, Castelo Branco Carvalho LJ.

Curr Protein Pept Sci. 2015;16(3):219-27.

PMID:
25707473
6.

Correlation of chemical compositions of cassava varieties to their resistance to Prostephanus truncatus horn (Coleoptera: Bostrichidae).

Osipitan AA, Sangowusi VT, Lawal OI, Popoola KO.

J Insect Sci. 2015 Feb 19;15:173. doi: 10.1093/jisesa/ieu173. Print 2015.

7.

Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs) involved in glucosinolates biosynthesis.

Zhang J, Wang X, Cheng F, Wu J, Liang J, Yang W, Wang X.

Front Plant Sci. 2015 Feb 3;6:18. doi: 10.3389/fpls.2015.00018. eCollection 2015.

8.

Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source.

Sia Ede F, Marcon J, Luvizotto DM, Quecine MC, Tsui S, Pereira JO, Pizzirani-Kleiner AA, Azevedo JL.

Springerplus. 2013 Oct 30;2:579. doi: 10.1186/2193-1801-2-579. eCollection 2013.

9.

Transcriptional response to petiole heat girdling in cassava.

Zhang Y, Ding Z, Ma F, Chauhan RD, Allen DK, Brutnell TP, Wang W, Peng M, Li P.

Sci Rep. 2015 Feb 12;5:8414. doi: 10.1038/srep08414.

10.

Large-scale SNP discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (Manihot esculenta Crantz).

Pootakham W, Shearman JR, Ruang-Areerate P, Sonthirod C, Sangsrakru D, Jomchai N, Yoocha T, Triwitayakorn K, Tragoonrung S, Tangphatsornruang S.

PLoS One. 2014 Dec 31;9(12):e116028. doi: 10.1371/journal.pone.0116028. eCollection 2014.

11.

Cassava (Manihot esculenta Krantz) genome harbors KNOX genes differentially expressed during storage root development.

Guo D, Li HL, Tang X, Peng SQ.

Genet Mol Res. 2014 Dec 18;13(4):10714-26. doi: 10.4238/2014.December.18.13.

12.

Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera.

Cao J, Han X, Zhang T, Yang Y, Huang J, Hu X.

BMC Genomics. 2014 Dec 16;15:1116. doi: 10.1186/1471-2164-15-1116.

13.

High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations.

International Cassava Genetic Map Consortium (ICGMC).

G3 (Bethesda). 2014 Dec 11;5(1):133-44. doi: 10.1534/g3.114.015008.

14.
15.

Cassava genome from a wild ancestor to cultivated varieties.

Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Møller BL, Zhang P, Luo MC, Xiao G, Liu J, Yang J, Chen S, Rabinowicz PD, Chen X, Zhang HB, Ceballos H, Lou Q, Zou M, Carvalho LJ, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara RM, Jørgensen K, Neale RL, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma PA, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon LJ, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, López-Lavalle LA, Wu J, You FM, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M.

Nat Commun. 2014 Oct 10;5:5110. doi: 10.1038/ncomms6110.

16.

Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza.

Chen H, Li G, Köllner TG, Jia Q, Gershenzon J, Chen F.

BMC Plant Biol. 2014 Sep 16;14:239. doi: 10.1186/s12870-014-0239-x.

17.

Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway.

Nougué O, Corbi J, Ball SG, Manicacci D, Tenaillon MI.

BMC Evol Biol. 2014 May 15;14:103. doi: 10.1186/1471-2148-14-103.

18.

Large-Scale Proteomics of the Cassava Storage Root and Identification of a Target Gene to Reduce Postharvest Deterioration.

Vanderschuren H, Nyaboga E, Poon JS, Baerenfaller K, Grossmann J, Hirsch-Hoffmann M, Kirchgessner N, Nanni P, Gruissem W.

Plant Cell. 2014 May 29;26(5):1913-1924. [Epub ahead of print]

19.

Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration.

Uarrota VG, Moresco R, Coelho B, Nunes Eda C, Peruch LA, Neubert Ede O, Rocha M, Maraschin M.

Food Chem. 2014 Oct 15;161:67-78. doi: 10.1016/j.foodchem.2014.03.110. Epub 2014 Apr 1.

PMID:
24837923
20.

Sensorial evolution of cassava flour (Manihot esculenta crantz) added to protein concentrate cassava leaves.

Lima EC, Feijo MB, Freitas MC, Dos Santos ER, Sabaa-Srur AU, Moura LS.

Food Sci Nutr. 2013 Sep;1(5):357-62. doi: 10.1002/fsn3.16. Epub 2012 Dec 26.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk