Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 123

1.

Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors.

Ji CC, Xu MW, Bao SJ, Cai CJ, Lu ZJ, Chai H, Yang F, Wei H.

J Colloid Interface Sci. 2013 Oct 1;407:416-24. doi: 10.1016/j.jcis.2013.06.054. Epub 2013 Jul 4.

PMID:
23880520
[PubMed]
2.

Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors.

Ye S, Feng J.

ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9671-9. doi: 10.1021/am502077p. Epub 2014 Jun 9.

PMID:
24873315
[PubMed - in process]
3.

Spontaneous assembly of strong and conductive graphene/polypyrrole hybrid aerogels for energy storage.

Sun R, Chen H, Li Q, Song Q, Zhang X.

Nanoscale. 2014 Nov 7;6(21):12912-20. doi: 10.1039/c4nr03322a.

PMID:
25232797
[PubMed - in process]
4.

Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.

Xu Z, Zhang Y, Li P, Gao C.

ACS Nano. 2012 Aug 28;6(8):7103-13. doi: 10.1021/nn3021772. Epub 2012 Jul 23.

PMID:
22799441
[PubMed - indexed for MEDLINE]
5.

Novel and facile method, dynamic self-assemble, to prepare SnO₂/rGO droplet aerogel with complex morphologies and their application in supercapacitors.

Chen M, Wang H, Li L, Zhang Z, Wang C, Liu Y, Wang W, Gao J.

ACS Appl Mater Interfaces. 2014 Aug 27;6(16):14327-37. doi: 10.1021/am5036169. Epub 2014 Aug 18.

PMID:
25082758
[PubMed - in process]
6.

Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity.

Huang H, Chen P, Zhang X, Lu Y, Zhan W.

Small. 2013 Apr 22;9(8):1397-404. doi: 10.1002/smll.201202965. Epub 2013 Mar 20.

PMID:
23512583
[PubMed]
7.

Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode.

Ye S, Feng J, Wu P.

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7122-9. doi: 10.1021/am401458x. Epub 2013 Jul 23.

PMID:
23844989
[PubMed]
8.

In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures.

Chen W, Yan L.

Nanoscale. 2011 Aug;3(8):3132-7. doi: 10.1039/c1nr10355e. Epub 2011 Jun 23.

PMID:
21698339
[PubMed - indexed for MEDLINE]
9.

Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage.

Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Müllen K.

J Am Chem Soc. 2012 Dec 5;134(48):19532-5. doi: 10.1021/ja308676h. Epub 2012 Nov 20.

PMID:
23148416
[PubMed]
10.

A facile route for 3D aerogels from nanostructured 1D and 2D materials.

Jung SM, Jung HY, Dresselhaus MS, Jung YJ, Kong J.

Sci Rep. 2012;2:849. doi: 10.1038/srep00849. Epub 2012 Nov 14. Erratum in: Sci Rep. 2013;3:1423.

PMID:
23152940
[PubMed]
Free PMC Article
11.

Ammonia solution strengthened three-dimensional macro-porous graphene aerogel.

Han Z, Tang Z, Li P, Yang G, Zheng Q, Yang J.

Nanoscale. 2013 Jun 21;5(12):5462-7. doi: 10.1039/c3nr00971h.

PMID:
23669862
[PubMed - indexed for MEDLINE]
12.

Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.

Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA.

ACS Nano. 2010 Mar 23;4(3):1587-95. doi: 10.1021/nn901819n.

PMID:
20184383
[PubMed]
13.

Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties.

Wang R, Xu C, Sun J, Gao L.

Sci Rep. 2014 Nov 25;4:7171. doi: 10.1038/srep07171.

PMID:
25421070
[PubMed - in process]
Free PMC Article
14.

An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks.

Shin YE, Sa YJ, Park S, Lee J, Shin KH, Joo SH, Ko H.

Nanoscale. 2014 Aug 21;6(16):9734-41. doi: 10.1039/c4nr01988a. Epub 2014 Jul 7.

PMID:
24998618
[PubMed - in process]
15.

Large-range control of the microstructures and properties of three-dimensional porous graphene.

Xie X, Zhou Y, Bi H, Yin K, Wan S, Sun L.

Sci Rep. 2013;3:2117. doi: 10.1038/srep02117.

PMID:
23817081
[PubMed]
Free PMC Article
16.

Ionic liquid-induced three-dimensional macroassembly of graphene and its applications in electrochemical energy storage.

Zhu C, Zhai J, Dong S.

Nanoscale. 2014 Sep 7;6(17):10077-83. doi: 10.1039/c4nr02400a.

PMID:
25033226
[PubMed - in process]
17.

Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials.

Chen S, Duan J, Tang Y, Zhang Qiao S.

Chemistry. 2013 May 27;19(22):7118-24. doi: 10.1002/chem.201300157. Epub 2013 Mar 28.

PMID:
23553792
[PubMed]
18.

Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker.

Zhu C, Guo S, Zhai Y, Dong S.

Langmuir. 2010 May 18;26(10):7614-8. doi: 10.1021/la904201j.

PMID:
20073489
[PubMed]
19.

Soft Electrodes: Highly Conductive, Capacitive, Flexible and Soft Electrodes Based on a 3D Graphene-Nanotube-Palladium Hybrid and Conducting Polymer (Small 24/2014).

Kim HJ, Randriamahazaka H, Oh IK.

Small. 2014 Dec;10(24):4985. doi: 10.1002/smll.201470152.

PMID:
25512318
[PubMed - in process]
20.

Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process.

Cong HP, Ren XC, Wang P, Yu SH.

ACS Nano. 2012 Mar 27;6(3):2693-703. doi: 10.1021/nn300082k. Epub 2012 Feb 13.

PMID:
22303866
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk