Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 171

1.

Huge suppression of charge recombination in P3HT-ZnO organic-inorganic hybrid solar cells by locating dyes at the ZnO/P3HT interfaces.

Shen Q, Ogomi Y, Das SK, Pandey SS, Yoshino K, Katayama K, Momose H, Toyoda T, Hayase S.

Phys Chem Chem Phys. 2013 Sep 14;15(34):14370-6. doi: 10.1039/c3cp52093e. Epub 2013 Jul 23.

PMID:
23877400
2.

Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell.

Zeng TW, Ho CC, Tu YC, Tu GY, Wang LY, Su WF.

Langmuir. 2011 Dec 20;27(24):15255-60. doi: 10.1021/la203533u. Epub 2011 Nov 28.

PMID:
22050188
3.

The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells.

Ichikawa T, Shiratori S.

J Nanosci Nanotechnol. 2012 May;12(5):3725-31.

PMID:
22852300
4.

Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction.

Eom SH, Baek MJ, Park H, Yan L, Liu S, You W, Lee SH.

ACS Appl Mater Interfaces. 2014 Jan 22;6(2):803-10. doi: 10.1021/am402684w. Epub 2014 Jan 3.

PMID:
24351036
5.

ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.

Lee TH, Sue HJ, Cheng X.

Nanotechnology. 2011 Jul 15;22(28):285401. doi: 10.1088/0957-4484/22/28/285401. Epub 2011 May 31.

PMID:
21625040
6.

Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells.

Ruankham P, Yoshikawa S, Sagawa T.

Phys Chem Chem Phys. 2013 Jun 28;15(24):9516-22. doi: 10.1039/c3cp50266j.

PMID:
23446342
7.

Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.

Liao WP, Wu JJ.

J Phys Chem Lett. 2013 Jun 6;4(11):1983-8. doi: 10.1021/jz400996d. Epub 2013 May 29.

PMID:
26283138
8.

Synergistic effect of dual interfacial modifications with room-temperature-grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P3HT hybrid solar cell.

Chen DW, Wang TC, Liao WP, Wu JJ.

ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8359-65. doi: 10.1021/am402265v. Epub 2013 Aug 26.

PMID:
23937447
9.

Mechanism of recombination losses in bulk heterojunction P3HT:PCBM solar cells studied using intensity modulated photocurrent spectroscopy.

Byers JC, Ballantyne S, Rodionov K, Mann A, Semenikhin OA.

ACS Appl Mater Interfaces. 2011 Feb;3(2):392-401. doi: 10.1021/am100998t. Epub 2011 Feb 7.

PMID:
21299191
10.

Role of structural order and excess energy on ultrafast free charge generation in hybrid polythiophene/Si photovoltaics probed in real time by near-infrared broadband transient absorption.

Herrmann D, Niesar S, Scharsich C, Köhler A, Stutzmann M, Riedle E.

J Am Chem Soc. 2011 Nov 16;133(45):18220-33. doi: 10.1021/ja207887q. Epub 2011 Oct 21.

PMID:
21942512
11.

Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells.

Wang TC, Su YH, Hung YK, Yeh CS, Huang LW, Gomulya W, Lai LH, Loi MA, Yang JS, Wu JJ.

Phys Chem Chem Phys. 2015 Aug 14;17(30):19854-61. doi: 10.1039/c5cp03081a.

PMID:
26159896
12.

Improving the efficiency of ZnO-based organic solar cell by self-assembled monolayer assisted modulation on the properties of ZnO acceptor layer.

Chiu JM, Tai Y.

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):6946-50. doi: 10.1021/am400928n. Epub 2013 Jul 29.

PMID:
23895177
13.

Electrospun ZnO nanowire plantations in the electron transport layer for high-efficiency inverted organic solar cells.

Elumalai NK, Jin TM, Chellappan V, Jose R, Palaniswamy SK, Jayaraman S, Raut HK, Ramakrishna S.

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9396-404. doi: 10.1021/am4013853. Epub 2013 Sep 26.

PMID:
24028573
14.

Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting.

Kim H, Jeong H, An TK, Park CE, Yong K.

ACS Appl Mater Interfaces. 2013 Jan 23;5(2):268-75. doi: 10.1021/am301960h. Epub 2012 Dec 24.

PMID:
23231810
15.

Recent progress in ZnO-based nanostructured ceramics in solar cell applications.

Loh L, Dunn S.

J Nanosci Nanotechnol. 2012 Nov;12(11):8215-30. Review.

PMID:
23421200
16.

Molecular bulk heterojunctions: an emerging approach to organic solar cells.

Roncali J.

Acc Chem Res. 2009 Nov 17;42(11):1719-30. doi: 10.1021/ar900041b.

PMID:
19580313
17.

Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.

Lek JY, Xing G, Sum TC, Lam YM.

ACS Appl Mater Interfaces. 2014 Jan 22;6(2):894-902. doi: 10.1021/am4041515. Epub 2014 Jan 3.

PMID:
24351093
18.

Charge transfer and recombination at the metal oxide/CH3NH3PbClI2/spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells.

Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S.

Phys Chem Chem Phys. 2014 Oct 7;16(37):19984-92. doi: 10.1039/c4cp03073g.

PMID:
25160913
19.

Improving the performance of P3HT-fullerene solar cells with side-chain-functionalized poly(thiophene) additives: a new paradigm for polymer design.

Lobez JM, Andrew TL, Bulović V, Swager TM.

ACS Nano. 2012 Apr 24;6(4):3044-56. doi: 10.1021/nn204589u. Epub 2012 Feb 27.

PMID:
22369316
20.

Influence of an Inorganic Interlayer on Exciton Separation in Hybrid Solar Cells.

Armstrong CL, Price MB, Muñoz-Rojas D, Davis NJ, Abdi-Jalebi M, Friend RH, Greenham NC, MacManus-Driscoll JL, Böhm ML, Musselman KP.

ACS Nano. 2015 Dec 22;9(12):11863-71. doi: 10.1021/acsnano.5b05934. Epub 2015 Nov 10.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk