Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 162

1.

Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy.

Zhang XD, Chen J, Luo Z, Wu D, Shen X, Song SS, Sun YM, Liu PX, Zhao J, Huo S, Fan S, Fan F, Liang XJ, Xie J.

Adv Healthc Mater. 2014 Jan;3(1):133-41. doi: 10.1002/adhm.201300189. Epub 2013 Jul 22.

PMID:
23873780
2.

Ultrasmall Au(10-12)(SG)(10-12) nanomolecules for high tumor specificity and cancer radiotherapy.

Zhang XD, Luo Z, Chen J, Shen X, Song S, Sun Y, Fan S, Fan F, Leong DT, Xie J.

Adv Mater. 2014 Jul 9;26(26):4565-8. doi: 10.1002/adma.201400866. Epub 2014 May 11.

PMID:
24817169
3.

Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance.

Zhang XD, Luo Z, Chen J, Song S, Yuan X, Shen X, Wang H, Sun Y, Gao K, Zhang L, Fan S, Leong DT, Guo M, Xie J.

Sci Rep. 2015 Mar 2;5:8669. doi: 10.1038/srep08669.

4.

Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation.

Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM.

Breast Cancer Res Treat. 2013 Jan;137(1):81-91. doi: 10.1007/s10549-012-2338-4. Epub 2012 Nov 18.

PMID:
23160926
5.

Synthesis, characterization, and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles.

Sousa AA, Morgan JT, Brown PH, Adams A, Jayasekara MP, Zhang G, Ackerson CJ, Kruhlak MJ, Leapman RD.

Small. 2012 Jul 23;8(14):2277-86. doi: 10.1002/smll.201200071. Epub 2012 Apr 20.

6.

Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy.

Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ.

Biomaterials. 2012 Sep;33(27):6408-19. doi: 10.1016/j.biomaterials.2012.05.047. Epub 2012 Jun 7.

PMID:
22681980
7.

In vivo renal clearance, biodistribution, toxicity of gold nanoclusters.

Zhang XD, Wu D, Shen X, Liu PX, Fan FY, Fan SJ.

Biomaterials. 2012 Jun;33(18):4628-38. doi: 10.1016/j.biomaterials.2012.03.020. Epub 2012 Mar 27.

PMID:
22459191
8.

Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy.

Butterworth KT, Coulter JA, Jain S, Forker J, McMahon SJ, Schettino G, Prise KM, Currell FJ, Hirst DG.

Nanotechnology. 2010 Jul 23;21(29):295101. doi: 10.1088/0957-4484/21/29/295101. Epub 2010 Jul 5.

9.

Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.

Luo Z, Zheng K, Xie J.

Chem Commun (Camb). 2014 May 25;50(40):5143-55. doi: 10.1039/c3cc47512c. Epub 2013 Nov 21.

PMID:
24266029
10.

The enhancement of electron-phonon coupling in glutathione-protected Au25 clusters.

Toh YR, Yu P, Wen X, Tang J.

J Colloid Interface Sci. 2013 Jul 15;402:86-9. doi: 10.1016/j.jcis.2013.04.012. Epub 2013 Apr 22.

PMID:
23664390
11.

Near infrared Ag/Au alloy nanoclusters: tunable photoluminescence and cellular imaging.

Wang C, Xu L, Xu X, Cheng H, Sun H, Lin Q, Zhang C.

J Colloid Interface Sci. 2014 Feb 15;416:274-9. doi: 10.1016/j.jcis.2013.11.011. Epub 2013 Nov 18.

PMID:
24370431
12.

Quantum sized gold nanoclusters with atomic precision.

Qian H, Zhu M, Wu Z, Jin R.

Acc Chem Res. 2012 Sep 18;45(9):1470-9. doi: 10.1021/ar200331z. Epub 2012 Jun 21.

PMID:
22720781
13.

Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization.

Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ, Sridhar S, Krishnan S.

Int J Radiat Oncol Biol Phys. 2016 Jan 1;94(1):189-205. doi: 10.1016/j.ijrobp.2015.09.032. Epub 2015 Sep 30. Review.

PMID:
26700713
14.

Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy.

Chen H, Li B, Ren X, Li S, Ma Y, Cui S, Gu Y.

Biomaterials. 2012 Nov;33(33):8461-76. doi: 10.1016/j.biomaterials.2012.08.034. Epub 2012 Aug 28.

PMID:
22951103
15.

Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: glutathione detection and selective cancer cell imaging.

Zhang X, Wu FG, Liu P, Gu N, Chen Z.

Small. 2014 Dec 29;10(24):5170-7. doi: 10.1002/smll.201401658. Epub 2014 Aug 11.

PMID:
25111498
16.

Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy.

Chen H, Li S, Li B, Ren X, Li S, Mahounga DM, Cui S, Gu Y, Achilefu S.

Nanoscale. 2012 Sep 28;4(19):6050-64. doi: 10.1039/c2nr31616a. Epub 2012 Aug 28.

PMID:
22930451
17.

Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency.

Li J, Han J, Xu T, Guo C, Bu X, Zhang H, Wang L, Sun H, Yang B.

Langmuir. 2013 Jun 11;29(23):7102-10. doi: 10.1021/la401366c. Epub 2013 May 30.

PMID:
23692027
18.

Gold nanoparticles as radiation sensitizers in cancer therapy.

Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA.

Radiat Res. 2010 Jun;173(6):719-28. doi: 10.1667/RR1984.1.

PMID:
20518651
19.

Facile synthesis of robust and biocompatible gold nanoparticles.

Jang H, Kim YK, Ryoo SR, Kim MH, Min DH.

Chem Commun (Camb). 2010 Jan 28;46(4):583-5. doi: 10.1039/b919971n. Epub 2009 Nov 16.

PMID:
20062869
20.

Enhanced photocatalytic water splitting by BaLa4Ti4O15 loaded with ∼1 nm gold nanoclusters using glutathione-protected Au25 clusters.

Negishi Y, Mizuno M, Hirayama M, Omatoi M, Takayama T, Iwase A, Kudo A.

Nanoscale. 2013 Aug 21;5(16):7188-92. doi: 10.1039/c3nr01888a. Epub 2013 Jun 10.

PMID:
23749156
Items per page

Supplemental Content

Write to the Help Desk