Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 289

1.

A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.

Kawarazaki T, Kimura S, Iizuka A, Hanamata S, Nibori H, Michikawa M, Imai A, Abe M, Kaya H, Kuchitsu K.

Biochim Biophys Acta. 2013 Dec;1833(12):2775-80. doi: 10.1016/j.bbamcr.2013.06.024. Epub 2013 Jul 16.

2.

Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species.

Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K.

Biochim Biophys Acta. 2012 Feb;1823(2):398-405. doi: 10.1016/j.bbamcr.2011.09.011. Epub 2011 Oct 6.

3.

The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system.

Kimura S, Kawarazaki T, Nibori H, Michikawa M, Imai A, Kaya H, Kuchitsu K.

J Biochem. 2013 Feb;153(2):191-5. doi: 10.1093/jb/mvs132. Epub 2012 Nov 18.

PMID:
23162070
4.
5.

Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase.

Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM.

FEBS Lett. 2009 Sep 17;583(18):2982-6. doi: 10.1016/j.febslet.2009.08.033. Epub 2009 Aug 29. Erratum in: FEBS Lett. 2009 Oct 20;583(20):3375.

6.

Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis.

Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X.

Plant Cell. 2009 Aug;21(8):2357-77. doi: 10.1105/tpc.108.062992. Epub 2009 Aug 18.

7.

NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.

Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI.

EMBO J. 2003 Jun 2;22(11):2623-33.

8.

Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation.

Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K.

J Biol Chem. 2008 Apr 4;283(14):8885-92. doi: 10.1074/jbc.M708106200. Epub 2008 Jan 23.

9.

The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF.

Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J.

Mol Plant. 2013 Mar;6(2):559-69. doi: 10.1093/mp/sst009. Epub 2013 Jan 18.

10.

AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis.

Chaouch S, Queval G, Noctor G.

Plant J. 2012 Feb;69(4):613-27. doi: 10.1111/j.1365-313X.2011.04816.x. Epub 2011 Nov 25.

PMID:
21985584
11.

AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis.

Jiao Y, Sun L, Song Y, Wang L, Liu L, Zhang L, Liu B, Li N, Miao C, Hao F.

J Exp Bot. 2013 Nov;64(14):4183-92. doi: 10.1093/jxb/ert228. Epub 2013 Aug 20.

12.

Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor.

Maruta T, Inoue T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S.

Plant Sci. 2011 Apr;180(4):655-60. doi: 10.1016/j.plantsci.2011.01.014. Epub 2011 Jan 28.

PMID:
21421415
13.

Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein.

Torres MA, Morales J, Sánchez-Rodríguez C, Molina A, Dangl JL.

Mol Plant Microbe Interact. 2013 Jun;26(6):686-94. doi: 10.1094/MPMI-10-12-0236-R.

14.

Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB.

Takahashi S, Kimura S, Kaya H, Iizuka A, Wong HL, Shimamoto K, Kuchitsu K.

J Biochem. 2012 Jul;152(1):37-43. doi: 10.1093/jb/mvs044. Epub 2012 Apr 23.

PMID:
22528669
15.

Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance.

DU ZY, Chen MX, Chen QF, Xiao S, Chye ML.

Plant Cell Environ. 2013 Feb;36(2):300-14. doi: 10.1111/j.1365-3040.2012.02574.x. Epub 2012 Aug 8.

PMID:
22788984
16.

ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis.

Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R, Smith JA, Harberd NP.

EMBO J. 2012 Nov 14;31(22):4359-70. doi: 10.1038/emboj.2012.273. Epub 2012 Oct 12. Erratum in: EMBO J. 2013 Mar 20;32(6):914.

17.

Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation.

Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T.

Proc Natl Acad Sci U S A. 2013 May 21;110(21):8744-9. doi: 10.1073/pnas.1221294110. Epub 2013 May 6.

18.

Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension.

Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K.

Plant Cell. 2007 Dec;19(12):4022-34. Epub 2007 Dec 21.

19.

The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli.

Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R.

Sci Signal. 2009 Aug 18;2(84):ra45. doi: 10.1126/scisignal.2000448.

20.

NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.

Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savouré A, Abdelly C.

J Plant Physiol. 2015 Feb 1;174:5-15. doi: 10.1016/j.jplph.2014.08.022. Epub 2014 Oct 23.

PMID:
25462961
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk