Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 155

1.

Gradual electroforming and memristive switching in Pt/CuO(x)/Si/Pt systems.

Wei LL, Shang DS, Sun JR, Lee SB, Sun ZG, Shen BG.

Nanotechnology. 2013 Aug 16;24(32):325202. doi: 10.1088/0957-4484/24/32/325202. Epub 2013 Jul 18.

PMID:
23867151
2.

Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO₂/Pt cell.

Yoon KJ, Lee MH, Kim GH, Song SJ, Seok JY, Han S, Yoon JH, Kim KM, Hwang CS.

Nanotechnology. 2012 May 11;23(18):185202. doi: 10.1088/0957-4484/23/18/185202. Epub 2012 Apr 20.

PMID:
22516621
3.

Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.

Kim KM, Kim GH, Song SJ, Seok JY, Lee MH, Yoon JH, Hwang CS.

Nanotechnology. 2010 Jul 30;21(30):305203. doi: 10.1088/0957-4484/21/30/305203. Epub 2010 Jul 8.

PMID:
20610869
4.

Effect of voltage polarity and amplitude on electroforming of TiO2 based memristive devices.

Jiang H, Xia Q.

Nanoscale. 2013 Apr 21;5(8):3257-61. doi: 10.1039/c3nr00622k. Epub 2013 Mar 20.

PMID:
23512126
5.

Key concepts behind forming-free resistive switching incorporated with rectifying transport properties.

Shuai Y, Ou X, Luo W, Mücklich A, Bürger D, Zhou S, Wu C, Chen Y, Zhang W, Helm M, Mikolajick T, Schmidt OG, Schmidt H.

Sci Rep. 2013;3:2208. doi: 10.1038/srep02208.

6.

Pt/WO3/FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing.

Shi T, Yin XB, Yang R, Guo X.

Phys Chem Chem Phys. 2016 Apr 14;18(14):9338-43. doi: 10.1039/c5cp07675g. Epub 2016 Mar 21.

PMID:
26996120
7.

Forming mechanism of the bipolar resistance switching in double-layer memristive nanodevices.

Lee SB, Yoo HK, Kim K, Lee JS, Kim YS, Sinn S, Lee D, Kang BS, Kahng B, Noh TW.

Nanotechnology. 2012 Aug 10;23(31):315202. doi: 10.1088/0957-4484/23/31/315202.

PMID:
22802159
8.

Si-based flexible memristive systems constructed using top-down methods.

Moon T, Kang J, Han Y, Kim C, Jeon Y, Kim H, Kim S.

ACS Appl Mater Interfaces. 2011 Oct;3(10):3957-61. doi: 10.1021/am2008344. Epub 2011 Sep 20.

PMID:
21899257
9.

Single CuO(x) nanowire memristor: forming-free resistive switching behavior.

Liang KD, Huang CH, Lai CC, Huang JS, Tsai HW, Wang YC, Shih YC, Chang MT, Lo SC, Chueh YL.

ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16537-44. doi: 10.1021/am502741m. Epub 2014 Sep 15.

PMID:
25162489
10.

Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells.

Schindler C, Valov I, Waser R.

Phys Chem Chem Phys. 2009 Jul 28;11(28):5974-9. doi: 10.1039/b901026b. Epub 2009 May 15.

PMID:
19588020
11.

Thin film deposition of metal oxides in resistance switching devices: electrode material dependence of resistance switching in manganite films.

Nakamura T, Homma K, Tachibana K.

Nanoscale Res Lett. 2013 Feb 15;8(1):76. doi: 10.1186/1556-276X-8-76.

12.

The mechanism of electroforming of metal oxide memristive switches.

Joshua Yang J, Miao F, Pickett MD, Ohlberg DA, Stewart DR, Lau CN, Williams RS.

Nanotechnology. 2009 May 27;20(21):215201. doi: 10.1088/0957-4484/20/21/215201. Epub 2009 May 5. Erratum in: Nanotechnology. 2010 Aug 20;21(33):339803.

PMID:
19423925
13.

Forming and switching mechanisms of a cation-migration-based oxide resistive memory.

Tsuruoka T, Terabe K, Hasegawa T, Aono M.

Nanotechnology. 2010 Oct 22;21(42):425205. doi: 10.1088/0957-4484/21/42/425205. Epub 2010 Sep 24.

PMID:
20864781
14.

Chemical insight into electroforming of resistive switching manganite heterostructures.

Borgatti F, Park C, Herpers A, Offi F, Egoavil R, Yamashita Y, Yang A, Kobata M, Kobayashi K, Verbeeck J, Panaccione G, Dittmann R.

Nanoscale. 2013 May 7;5(9):3954-60. doi: 10.1039/c3nr00106g. Epub 2013 Mar 28.

PMID:
23535767
15.

Prominent thermodynamical interaction with surroundings on nanoscale memristive switching of metal oxides.

Nagashima K, Yanagida T, Oka K, Kanai M, Klamchuen A, Rahong S, Meng G, Horprathum M, Xu B, Zhuge F, He Y, Park BH, Kawai T.

Nano Lett. 2012 Nov 14;12(11):5684-90. doi: 10.1021/nl302880a. Epub 2012 Oct 9.

PMID:
23039823
16.

Bias-polarity-dependent resistance switching in W/SiO2/Pt and W/SiO2/Si/Pt structures.

Jiang H, Li XY, Chen R, Shao XL, Yoon JH, Hu X, Hwang CS, Zhao J.

Sci Rep. 2016 Feb 26;6:22216. doi: 10.1038/srep22216.

17.

Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface.

Rahaman SZ, Maikap S, Tien TC, Lee HY, Chen WS, Chen FT, Kao MJ, Tsai MJ.

Nanoscale Res Lett. 2012 Jun 26;7(1):345. doi: 10.1186/1556-276X-7-345.

18.

Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application.

Gao S, Zeng F, Li F, Wang M, Mao H, Wang G, Song C, Pan F.

Nanoscale. 2015 Apr 14;7(14):6031-8. doi: 10.1039/c4nr06406b.

PMID:
25765948
19.

Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

Mustaqima M, Yoo P, Huang W, Lee BW, Liu C.

Nanoscale Res Lett. 2015 Apr 8;10:168. doi: 10.1186/s11671-015-0876-5. eCollection 2015.

20.

TiO2--a prototypical memristive material.

Szot K, Rogala M, Speier W, Klusek Z, Besmehn A, Waser R.

Nanotechnology. 2011 Jun 24;22(25):254001. doi: 10.1088/0957-4484/22/25/254001. Epub 2011 May 16.

PMID:
21572202
Items per page

Supplemental Content

Write to the Help Desk