Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Conjugated polymer/photochromophore binary nanococktails: bistable photoswitching of near-infrared fluorescence for in vivo imaging.

Jeong K, Park S, Lee YD, Lim CK, Kim J, Chung BH, Kwon IC, Park CR, Kim S.

Adv Mater. 2013 Oct 18;25(39):5574-80. doi: 10.1002/adma.201301901. Epub 2013 Jul 12.

PMID:
23847108
2.

Tuning solid-state fluorescence to the near-infrared: a combinatorial approach to discovering molecular nanoprobes for biomedical imaging.

Singh A, Lim CK, Lee YD, Maeng JH, Lee S, Koh J, Kim S.

ACS Appl Mater Interfaces. 2013 Sep 25;5(18):8881-8. doi: 10.1021/am4012066. Epub 2013 Jun 18.

PMID:
23731221
3.

Reversible photoswitching conjugated polymer nanoparticles for cell and ex vivo tumor imaging.

Feng G, Ding D, Li K, Liu J, Liu B.

Nanoscale. 2014 Apr 21;6(8):4141-7. doi: 10.1039/c3nr06663k.

PMID:
24604130
4.

Near-infrared optical imaging of nucleic acid nanocarriers in vivo.

Rome C, Gravier J, Morille M, Divita G, Bolcato-Bellemin AL, Josserand V, Coll JL.

Methods Mol Biol. 2013;948:49-65. doi: 10.1007/978-1-62703-140-0_5.

PMID:
23070763
5.

Long-term-stable near-infrared polymer dots with ultrasmall size and narrow-band emission for imaging tumor vasculature in vivo.

Xiong L, Cao F, Cao X, Guo Y, Zhang Y, Cai X.

Bioconjug Chem. 2015 May 20;26(5):817-21. doi: 10.1021/acs.bioconjchem.5b00163. Epub 2015 May 8.

PMID:
25928072
6.

Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation.

Yu XF, Sun Z, Li M, Xiang Y, Wang QQ, Tang F, Wu Y, Cao Z, Li W.

Biomaterials. 2010 Nov;31(33):8724-31. doi: 10.1016/j.biomaterials.2010.07.099. Epub 2010 Aug 21.

PMID:
20728213
7.

PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters.

Hu H, Huang P, Weiss OJ, Yan X, Yue X, Zhang MG, Tang Y, Nie L, Ma Y, Niu G, Wu K, Chen X.

Biomaterials. 2014 Dec;35(37):9868-76. doi: 10.1016/j.biomaterials.2014.08.038. Epub 2014 Sep 15.

8.

Bright far-red/near-infrared conjugated polymer nanoparticles for in vivo bioimaging.

Ding D, Liu J, Feng G, Li K, Hu Y, Liu B.

Small. 2013 Sep 23;9(18):3093-102. doi: 10.1002/smll.201300171. Epub 2013 Apr 26.

PMID:
23625815
9.

Non-invasive imaging of endothelial progenitor cells in tumor neovascularization using a novel dual-modality paramagnetic/near-infrared fluorescence probe.

Wang XY, Ju S, Li C, Peng XG, Chen AF, Mao H, Teng GJ.

PLoS One. 2012;7(11):e50575. doi: 10.1371/journal.pone.0050575. Epub 2012 Nov 30.

10.

Near-infrared emitting polymer nanogels for efficient sentinel lymph node mapping.

Noh YW, Kong SH, Choi DY, Park HS, Yang HK, Lee HJ, Kim HC, Kang KW, Sung MH, Lim YT.

ACS Nano. 2012 Sep 25;6(9):7820-31. Epub 2012 Aug 8.

PMID:
22862428
11.

Multifunctional in vivo vascular imaging using near-infrared II fluorescence.

Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H.

Nat Med. 2012 Dec;18(12):1841-6. doi: 10.1038/nm.2995. Epub 2012 Nov 18.

12.

Nano-confined squaraine dye assemblies: new photoacoustic and near-infrared fluorescence dual-modular imaging probes in vivo.

Zhang D, Zhao YX, Qiao ZY, Mayerhöffer U, Spenst P, Li XJ, Würthner F, Wang H.

Bioconjug Chem. 2014 Nov 19;25(11):2021-9. doi: 10.1021/bc5003983. Epub 2014 Nov 5.

PMID:
25370305
13.

Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.

Kobayashi H, Koyama Y, Barrett T, Hama Y, Regino CA, Shin IS, Jang BS, Le N, Paik CH, Choyke PL, Urano Y.

ACS Nano. 2007 Nov;1(4):258-64. doi: 10.1021/nn700062z.

14.

Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window.

Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng K, Zhang X, Chen C, Liu B, He Y, Wu JZ, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H.

Nat Commun. 2014 Jun 20;5:4206. doi: 10.1038/ncomms5206.

PMID:
24947309
15.

Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging.

Ding D, Li K, Qin W, Zhan R, Hu Y, Liu J, Tang BZ, Liu B.

Adv Healthc Mater. 2013 Mar;2(3):500-7. doi: 10.1002/adhm.201200243. Epub 2012 Nov 26.

PMID:
23184536
16.

Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging.

Chuang YJ, Zhen Z, Zhang F, Liu F, Mishra JP, Tang W, Chen H, Huang X, Wang L, Chen X, Xie J, Pan Z.

Theranostics. 2014 Aug 24;4(11):1112-22. doi: 10.7150/thno.9710. eCollection 2014.

17.

In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results.

Wang S, Zhao J, Lui H, He Q, Zeng H.

Skin Res Technol. 2013 Feb;19(1):20-6. doi: 10.1111/j.1600-0846.2012.00632.x. Epub 2012 Jun 22.

PMID:
22724585
18.

Robotic real-time near infrared targeted fluorescence imaging in a murine model of prostate cancer: a feasibility study.

Laydner H, Huang SS, Heston WD, Autorino R, Wang X, Harsch KM, Magi-Galluzzi C, Isac W, Khanna R, Hu B, Escobar P, Chalikonda S, Rao PK, Haber GP, Kaouk JH, Stein RJ.

Urology. 2013 Feb;81(2):451-6. doi: 10.1016/j.urology.2012.02.075.

PMID:
23374828
19.

Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.

Yuan L, Lin W, Chen H.

Biomaterials. 2013 Dec;34(37):9566-71. doi: 10.1016/j.biomaterials.2013.08.081. Epub 2013 Sep 17.

PMID:
24054843
20.

X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes.

Naczynski DJ, Sun C, Türkcan S, Jenkins C, Koh AL, Ikeda D, Pratx G, Xing L.

Nano Lett. 2015 Jan 14;15(1):96-102. doi: 10.1021/nl504123r. Epub 2014 Dec 15.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk