Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity.

Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D'Alessio AC, Young RA, Weinberg RA.

Cell. 2013 Jul 3;154(1):61-74. doi: 10.1016/j.cell.2013.06.005.

2.

Poised with purpose: cell plasticity enhances tumorigenicity.

Marjanovic ND, Weinberg RA, Chaffer CL.

Cell Cycle. 2013 Sep 1;12(17):2713-4. doi: 10.4161/cc.26075. Epub 2013 Aug 19. No abstract available.

3.

Loss of the polycomb protein Mel-18 enhances the epithelial-mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer.

Lee JY, Park MK, Park JH, Lee HJ, Shin DH, Kang Y, Lee CH, Kong G.

Oncogene. 2014 Mar 6;33(10):1325-35. doi: 10.1038/onc.2013.53. Epub 2013 Mar 11.

PMID:
23474752
4.

MiR-200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer.

Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X, Zhao J, Gu B, Zheng GX, Yang AG, Jia LT.

Int J Cancer. 2014 Sep 15;135(6):1356-68. doi: 10.1002/ijc.28782. Epub 2014 Mar 3.

5.

Epithelial-mesenchymal transition transcription factor ZEB1/ZEB2 co-expression predicts poor prognosis and maintains tumor-initiating properties in head and neck cancer.

Chu PY, Hu FW, Yu CC, Tsai LL, Yu CH, Wu BC, Chen YW, Huang PI, Lo WL.

Oral Oncol. 2013 Jan;49(1):34-41. doi: 10.1016/j.oraloncology.2012.07.012. Epub 2012 Aug 11.

PMID:
22892238
6.

Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines.

Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L, Wang M, Westerdaal NA, Kvalheim G, Gaudernack G.

PLoS One. 2013;8(3):e57020. doi: 10.1371/journal.pone.0057020. Epub 2013 Mar 4.

7.

Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma.

Geng S, Guo Y, Wang Q, Li L, Wang J.

Arch Dermatol Res. 2013 Jan;305(1):35-47. doi: 10.1007/s00403-012-1260-2. Epub 2012 Jun 28.

PMID:
22740085
8.

Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM.

Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, Rankin-Gee EK, Wang SE.

Oncogene. 2011 Mar 24;30(12):1470-80. doi: 10.1038/onc.2010.531. Epub 2010 Nov 22.

9.

The expression of stem cell protein Piwil2 and piR-932 in breast cancer.

Zhang H, Ren Y, Xu H, Pang D, Duan C, Liu C.

Surg Oncol. 2013 Dec;22(4):217-23. doi: 10.1016/j.suronc.2013.07.001. Epub 2013 Aug 27.

PMID:
23992744
11.

β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness.

Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A.

Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19204-9. doi: 10.1073/pnas.1108977108. Epub 2011 Nov 11.

12.

Breast cancer stem cells and intrinsic subtypes: controversies rage on.

Nakshatri H, Srour EF, Badve S.

Curr Stem Cell Res Ther. 2009 Jan;4(1):50-60. Review.

PMID:
19149630
13.

IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation.

Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J.

Mol Cancer. 2012 Nov 23;11:87. doi: 10.1186/1476-4598-11-87.

14.

MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways.

Li X, Roslan S, Johnstone CN, Wright JA, Bracken CP, Anderson M, Bert AG, Selth LA, Anderson RL, Goodall GJ, Gregory PA, Khew-Goodall Y.

Oncogene. 2014 Jul 31;33(31):4077-88. doi: 10.1038/onc.2013.370. Epub 2013 Sep 16.

PMID:
24037528
15.

Basal/HER2 breast carcinomas: integrating molecular taxonomy with cancer stem cell dynamics to predict primary resistance to trastuzumab (Herceptin).

Martin-Castillo B, Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Moreno JM, Corominas-Faja B, Urruticoechea A, Martín ÁG, López-Bonet E, Menendez JA.

Cell Cycle. 2013 Jan 15;12(2):225-45. doi: 10.4161/cc.23274. Epub 2012 Jan 15.

16.

Coordinated regulation of β-tubulin isotypes and epithelial-to-mesenchymal transition protein ZEB1 in breast cancer cells.

Lobert S, Graichen ME, Morris K.

Biochemistry. 2013 Aug 13;52(32):5482-90. doi: 10.1021/bi400340g. Epub 2013 Jul 29.

PMID:
23869586
17.

Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway.

Won HY, Lee JY, Shin DH, Park JH, Nam JS, Kim HC, Kong G.

FASEB J. 2012 Dec;26(12):5002-13. doi: 10.1096/fj.12-209247. Epub 2012 Sep 5.

18.

Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion.

Iliopoulos D, Hirsch HA, Wang G, Struhl K.

Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1397-402. doi: 10.1073/pnas.1018898108. Epub 2011 Jan 10.

19.

Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative.

Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, Costea DE, Mackenzie IC.

Cancer Res. 2011 Aug 1;71(15):5317-26. doi: 10.1158/0008-5472.CAN-11-1059. Epub 2011 Jun 17.

20.

Cell fate determination factor Dachshund reprograms breast cancer stem cell function.

Wu K, Jiao X, Li Z, Katiyar S, Casimiro MC, Yang W, Zhang Q, Willmarth NE, Chepelev I, Crosariol M, Wei Z, Hu J, Zhao K, Pestell RG.

J Biol Chem. 2011 Jan 21;286(3):2132-42. doi: 10.1074/jbc.M110.148395. Epub 2010 Oct 11.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk