Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Intramuscular delivery of 3D aggregates of HUVECs and cbMSCs for cellular cardiomyoplasty in rats with myocardial infarction.

Chen DY, Wei HJ, Lin WW, Lin KJ, Huang CC, Wu CT, Hwang SM, Chang Y, Sung HW.

J Control Release. 2013 Dec 10;172(2):419-25. doi: 10.1016/j.jconrel.2013.06.025. Epub 2013 Jul 1.

PMID:
23827474
2.

Multimodality noninvasive imaging for assessing therapeutic effects of exogenously transplanted cell aggregates capable of angiogenesis on acute myocardial infarction.

Huang CC, Wei HJ, Lin KJ, Lin WW, Wang CW, Pan WY, Hwang SM, Chang Y, Sung HW.

Biomaterials. 2015 Dec;73:12-22. doi: 10.1016/j.biomaterials.2015.09.009. Epub 2015 Sep 11.

PMID:
26386627
3.

Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia.

Chen DY, Wei HJ, Lin KJ, Huang CC, Wang CC, Wu CT, Chao KT, Chen KJ, Chang Y, Sung HW.

Biomaterials. 2013 Mar;34(8):1995-2004. doi: 10.1016/j.biomaterials.2012.11.045. Epub 2012 Dec 12.

PMID:
23245925
4.

Vascularization and restoration of heart function in rat myocardial infarction using transplantation of human cbMSC/HUVEC core-shell bodies.

Lee WY, Wei HJ, Wang JJ, Lin KJ, Lin WW, Chen DY, Huang CC, Lee TY, Ma HY, Hwang SM, Chang Y, Sung HW.

Biomaterials. 2012 Mar;33(7):2127-36. doi: 10.1016/j.biomaterials.2011.11.059. Epub 2011 Dec 12.

PMID:
22169824
5.

Hypoxia-induced therapeutic neovascularization in a mouse model of an ischemic limb using cell aggregates composed of HUVECs and cbMSCs.

Huang CC, Chen DY, Wei HJ, Lin KJ, Wu CT, Lee TY, Hu HY, Hwang SM, Chang Y, Sung HW.

Biomaterials. 2013 Dec;34(37):9441-50. doi: 10.1016/j.biomaterials.2013.09.010. Epub 2013 Sep 17.

PMID:
24054844
6.

A translational approach in using cell sheet fragments of autologous bone marrow-derived mesenchymal stem cells for cellular cardiomyoplasty in a porcine model.

Huang CC, Tsai HW, Lee WY, Lin WW, Chen DY, Hung YW, Chen JW, Hwang SM, Chang Y, Sung HW.

Biomaterials. 2013 Jun;34(19):4582-91. doi: 10.1016/j.biomaterials.2013.03.003. Epub 2013 Mar 23.

PMID:
23528228
7.

Spherically symmetric mesenchymal stromal cell bodies inherent with endogenous extracellular matrices for cellular cardiomyoplasty.

Wang CC, Chen CH, Hwang SM, Lin WW, Huang CH, Lee WY, Chang Y, Sung HW.

Stem Cells. 2009 Mar;27(3):724-32. doi: 10.1634/stemcells.2008-0944.

8.

Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy.

Wang F, Guan J.

Adv Drug Deliv Rev. 2010 Jun 15;62(7-8):784-97. doi: 10.1016/j.addr.2010.03.001. Epub 2010 Mar 6. Review.

PMID:
20214939
9.

Transplanted human umbilical cord blood mononuclear cells improve left ventricular function through angiogenesis in myocardial infarction.

Hu CH, Wu GF, Wang XQ, Yang YH, Du ZM, He XH, Xiang P.

Chin Med J (Engl). 2006 Sep 20;119(18):1499-506.

PMID:
16996002
10.

Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts.

Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, Kurosawa H, Kobayashi E, Okano T.

Circulation. 2008 Sep 30;118(14 Suppl):S145-52. doi: 10.1161/CIRCULATIONAHA.107.757286.

11.

Effects of Tongxinluo-facilitated cellular cardiomyoplasty with autologous bone marrow-mesenchymal stem cells on postinfarct swine hearts.

Qian HY, Yang YJ, Huang J, Gao RL, Dou KF, Yang GS, Li JJ, Shen R, He ZX, Lu MJ, Zhao SH.

Chin Med J (Engl). 2007 Aug 20;120(16):1416-25.

PMID:
17825171
12.

Outcome improvement of cellular cardiomyoplasty using triple therapy: mesenchymal stem cell+erythropoietin+vascular endothelial growth factor.

Tavakoli F, Ostad SN, Khori V, Alizadeh AM, Sadeghpour A, Darbandi Azar A, Haghjoo M, Zare A, Nayebpour M.

Eur J Pharmacol. 2013 Aug 15;714(1-3):456-63. doi: 10.1016/j.ejphar.2013.07.001. Epub 2013 Jul 9.

PMID:
23850947
13.

Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo.

Roura S, Bagó JR, Soler-Botija C, Pujal JM, Gálvez-Montón C, Prat-Vidal C, Llucià-Valldeperas A, Blanco J, Bayes-Genis A.

PLoS One. 2012;7(11):e49447. doi: 10.1371/journal.pone.0049447. Epub 2012 Nov 16.

14.

Embryonic cardiomyocyte, but not autologous stem cell transplantation, restricts infarct expansion, enhances ventricular function, and improves long-term survival.

Paulis LE, Klein AM, Ghanem A, Geelen T, Coolen BF, Breitbach M, Zimmermann K, Nicolay K, Fleischmann BK, Roell W, Strijkers GJ.

PLoS One. 2013 Apr 9;8(4):e61510. doi: 10.1371/journal.pone.0061510. Print 2013.

16.

Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival.

Li H, Zuo S, He Z, Yang Y, Pasha Z, Wang Y, Xu M.

Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1772-81. doi: 10.1152/ajpheart.00557.2010. Epub 2010 Sep 24.

17.

Wharton's jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction.

Zhang W, Liu XC, Yang L, Zhu DL, Zhang YD, Chen Y, Zhang HY.

Coron Artery Dis. 2013 Nov;24(7):549-58. doi: 10.1097/MCA.0b013e3283640f00.

PMID:
23892469
18.

Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium.

Reffelmann T, Dow JS, Dai W, Hale SL, Simkhovich BZ, Kloner RA.

J Mol Cell Cardiol. 2003 Jun;35(6):607-13.

PMID:
12788378
19.

Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction.

Hu X, Wang J, Chen J, Luo R, He A, Xie X, Li J.

Eur J Cardiothorac Surg. 2007 Mar;31(3):438-43. Epub 2007 Jan 17.

PMID:
17239611
20.

Modulation of human mesenchymal stem cell function in a three-dimensional matrix promotes attenuation of adverse remodelling after myocardial infarction.

Simpson DL, Dudley SC Jr.

J Tissue Eng Regen Med. 2013 Mar;7(3):192-202. doi: 10.1002/term.511. Epub 2011 Nov 18.

PMID:
22095744
Items per page

Supplemental Content

Write to the Help Desk