Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 334

Similar articles for PubMed (Select 23815503)

1.

GAM-NGS: genomic assemblies merger for next generation sequencing.

Vicedomini R, Vezzi F, Scalabrin S, Arvestad L, Policriti A.

BMC Bioinformatics. 2013;14 Suppl 7:S6. doi: 10.1186/1471-2105-14-S7-S6. Epub 2013 Apr 22.

2.

GapFiller: a de novo assembly approach to fill the gap within paired reads.

Nadalin F, Vezzi F, Policriti A.

BMC Bioinformatics. 2012;13 Suppl 14:S8. doi: 10.1186/1471-2105-13-S14-S8. Epub 2012 Sep 7.

3.

Comparing de novo assemblers for 454 transcriptome data.

Kumar S, Blaxter ML.

BMC Genomics. 2010 Oct 16;11:571. doi: 10.1186/1471-2164-11-571.

4.

De novo likelihood-based measures for comparing genome assemblies.

Ghodsi M, Hill CM, Astrovskaya I, Lin H, Sommer DD, Koren S, Pop M.

BMC Res Notes. 2013 Aug 22;6:334. doi: 10.1186/1756-0500-6-334.

5.

Software for pre-processing Illumina next-generation sequencing short read sequences.

Chen C, Khaleel SS, Huang H, Wu CH.

Source Code Biol Med. 2014 May 3;9:8. doi: 10.1186/1751-0473-9-8. eCollection 2014.

6.

Graph accordance of next-generation sequence assemblies.

Yao G, Ye L, Gao H, Minx P, Warren WC, Weinstock GM.

Bioinformatics. 2012 Jan 1;28(1):13-6. doi: 10.1093/bioinformatics/btr588. Epub 2011 Oct 23.

7.

Ragout-a reference-assisted assembly tool for bacterial genomes.

Kolmogorov M, Raney B, Paten B, Pham S.

Bioinformatics. 2014 Jun 15;30(12):i302-9. doi: 10.1093/bioinformatics/btu280.

8.

Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools.

Kisand V, Lettieri T.

BMC Genomics. 2013 Apr 1;14:211. doi: 10.1186/1471-2164-14-211.

9.

Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.

Wetzel J, Kingsford C, Pop M.

BMC Bioinformatics. 2011 Apr 13;12:95. doi: 10.1186/1471-2105-12-95.

10.

Optimizing hybrid assembly of next-generation sequence data from Enterococcus faecium: a microbe with highly divergent genome.

Wang Y, Yu Y, Pan B, Hao P, Li Y, Shao Z, Xu X, Li X.

BMC Syst Biol. 2012;6 Suppl 3:S21. doi: 10.1186/1752-0509-6-S3-S21. Epub 2012 Dec 17.

11.

The MaSuRCA genome assembler.

Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA.

Bioinformatics. 2013 Nov 1;29(21):2669-77. doi: 10.1093/bioinformatics/btt476. Epub 2013 Aug 29.

12.

CISA: contig integrator for sequence assembly of bacterial genomes.

Lin SH, Liao YC.

PLoS One. 2013;8(3):e60843. doi: 10.1371/journal.pone.0060843. Epub 2013 Mar 28.

13.

AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references.

Bao E, Jiang T, Girke T.

Bioinformatics. 2014 Jun 15;30(12):i319-i328. doi: 10.1093/bioinformatics/btu291.

14.

Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.

Haznedaroglu BZ, Reeves D, Rismani-Yazdi H, Peccia J.

BMC Bioinformatics. 2012 Jul 18;13:170. doi: 10.1186/1471-2105-13-170.

15.

Finishing bacterial genome assemblies with Mix.

Soueidan H, Maurier F, Groppi A, Sirand-Pugnet P, Tardy F, Citti C, Dupuy V, Nikolski M.

BMC Bioinformatics. 2013;14 Suppl 15:S16. doi: 10.1186/1471-2105-14-S15-S16. Epub 2013 Oct 15.

16.

Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers.

Medvedev P, Pham S, Chaisson M, Tesler G, Pevzner P.

J Comput Biol. 2011 Nov;18(11):1625-34. doi: 10.1089/cmb.2011.0151. Epub 2011 Oct 14.

17.

Meta-IDBA: a de Novo assembler for metagenomic data.

Peng Y, Leung HC, Yiu SM, Chin FY.

Bioinformatics. 2011 Jul 1;27(13):i94-101. doi: 10.1093/bioinformatics/btr216.

18.

Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

Desai A, Marwah VS, Yadav A, Jha V, Dhaygude K, Bangar U, Kulkarni V, Jere A.

PLoS One. 2013 Apr 12;8(4):e60204. doi: 10.1371/journal.pone.0060204. Print 2013.

19.

ExSPAnder: a universal repeat resolver for DNA fragment assembly.

Prjibelski AD, Vasilinetc I, Bankevich A, Gurevich A, Krivosheeva T, Nurk S, Pham S, Korobeynikov A, Lapidus A, Pevzner PA.

Bioinformatics. 2014 Jun 15;30(12):i293-301. doi: 10.1093/bioinformatics/btu266.

20.

Evaluation of short read metagenomic assembly.

Charuvaka A, Rangwala H.

BMC Genomics. 2011;12 Suppl 2:S8. doi: 10.1186/1471-2164-12-S2-S8. Epub 2011 Jul 27.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk