Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Mitochondrial function and increased convective O2 transport: implications for the assessment of mitochondrial respiration in vivo.

Layec G, Haseler LJ, Trinity JD, Hart CR, Liu X, Le Fur Y, Jeong EK, Richardson RS.

J Appl Physiol (1985). 2013 Sep;115(6):803-11. doi: 10.1152/japplphysiol.00257.2013. Epub 2013 Jun 27.

2.

Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo.

Kemp GJ, Roberts N, Bimson WE, Bakran A, Harris PL, Gilling-Smith GL, Brennan J, Rankin A, Frostick SP.

J Vasc Surg. 2001 Dec;34(6):1103-10.

3.

Mitochondrial coupling in humans: assessment of the P/O2 ratio at the onset of calf exercise.

Cettolo V, Cautero M, Tam E, Francescato MP.

Eur J Appl Physiol. 2007 Apr;99(6):593-604. Epub 2007 Jan 6.

PMID:
17206437
4.

Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans.

Layec G, Malucelli E, Le Fur Y, Manners D, Yashiro K, Testa C, Cozzone PJ, Iotti S, Bendahan D.

NMR Biomed. 2013 Nov;26(11):1403-11. doi: 10.1002/nbm.2966. Epub 2013 May 23.

PMID:
23703831
5.

Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability.

Haseler LJ, Hogan MC, Richardson RS.

J Appl Physiol (1985). 1999 Jun;86(6):2013-8.

6.

Evidence of Preserved Oxidative Capacity and Oxygen Delivery in the Plantar Flexor Muscles With Age.

Hart CR, Layec G, Trinity JD, Liu X, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS.

J Gerontol A Biol Sci Med Sci. 2015 Sep;70(9):1067-76. doi: 10.1093/gerona/glu139. Epub 2014 Aug 27.

PMID:
25165028
7.

A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy.

Ryan TE, Southern WM, Reynolds MA, McCully KK.

J Appl Physiol (1985). 2013 Dec;115(12):1757-66. doi: 10.1152/japplphysiol.00835.2013. Epub 2013 Oct 17.

8.

Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.

Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD.

J Vasc Surg. 2000 May;31(5):944-52.

9.

In vivo evidence of an age-related increase in ATP cost of contraction in the plantar flexor muscles.

Layec G, Trinity JD, Hart CR, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS.

Clin Sci (Lond). 2014 Apr;126(8):581-92. doi: 10.1042/CS20130442.

PMID:
24224517
10.

Reduced muscle oxidative capacity is independent of O2 availability in elderly people.

Layec G, Haseler LJ, Richardson RS.

Age (Dordr). 2013 Aug;35(4):1183-92. doi: 10.1007/s11357-012-9442-6. Epub 2012 Jul 4.

11.
12.

Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion.

Smith SA, Montain SJ, Zientara GP, Fielding RA.

J Appl Physiol (1985). 2004 Jun;96(6):2288-92. Epub 2004 Feb 20.

13.

Skeletal muscle metabolic recovery following submaximal exercise in chronic heart failure is limited more by O(2) delivery than O(2) utilization.

Kemps HM, Prompers JJ, Wessels B, De Vries WR, Zonderland ML, Thijssen EJ, Nicolay K, Schep G, Doevendans PA.

Clin Sci (Lond). 2009 Oct 26;118(3):203-10.

PMID:
20310084
14.

Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.

van den Broek NM, Ciapaite J, Nicolay K, Prompers JJ.

Am J Physiol Cell Physiol. 2010 Nov;299(5):C1136-43. doi: 10.1152/ajpcell.00200.2010. Epub 2010 Jul 28.

15.
16.

Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia.

Vanhatalo A, Jones AM, Blackwell JR, Winyard PG, Fulford J.

J Appl Physiol (1985). 2014 Dec 15;117(12):1460-70. doi: 10.1152/japplphysiol.00096.2014. Epub 2014 Oct 9.

17.

High-energy phosphate metabolism in the calf muscle of healthy humans during incremental calf exercise with and without moderate cuff stenosis.

Greiner A, Esterhammer R, Bammer D, Messner H, Kremser C, Jaschke WR, Fraedrich G, Schocke MF.

Eur J Appl Physiol. 2007 Mar;99(5):519-31. Epub 2007 Jan 6.

PMID:
17206438
18.

Bio-energetic impairment in human calf muscle in thyroid disorders: a 31P MRS study.

Khushu S, Rana P, Sekhri T, Sripathy G, Tripathi RP.

Magn Reson Imaging. 2010 Jun;28(5):683-9. doi: 10.1016/j.mri.2010.01.006. Epub 2010 Mar 23.

PMID:
20332062
19.

Normal in vivo skeletal muscle oxidative metabolism in sporadic inclusion body myositis assessed by 31P-magnetic resonance spectroscopy.

Lodi R, Taylor DJ, Tabrizi SJ, Hilton-Jones D, Squier MV, Seller A, Styles P, Schapira AH.

Brain. 1998 Nov;121 ( Pt 11):2119-26.

20.

Cellular bioenergetics after erythropoietin therapy in chronic renal failure.

Marrades RM, Alonso J, Roca J, González de Suso JM, Campistol JM, Barberá JA, Diaz O, Torregrosa JV, Masclans JR, Rodríguez-Roisin R, Wagner PD.

J Clin Invest. 1996 May 1;97(9):2101-10.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk