Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Quantum simulation of low-temperature metallic liquid hydrogen.

Chen J, Li XZ, Zhang Q, Probert MI, Pickard CJ, Needs RJ, Michaelides A, Wang E.

Nat Commun. 2013;4:2064. doi: 10.1038/ncomms3064.

PMID:
23807128
2.

Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations.

Morales MA, Pierleoni C, Schwegler E, Ceperley DM.

Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12799-803. doi: 10.1073/pnas.1007309107. Epub 2010 Jun 21.

3.

A quantum fluid of metallic hydrogen suggested by first-principles calculations.

Bonev SA, Schwegler E, Ogitsu T, Galli G.

Nature. 2004 Oct 7;431(7009):669-72.

PMID:
15470423
4.

Classical and quantum ordering of protons in cold solid hydrogen under megabar pressures.

Li XZ, Walker B, Probert MI, Pickard CJ, Needs RJ, Michaelides A.

J Phys Condens Matter. 2013 Feb 27;25(8):085402. doi: 10.1088/0953-8984/25/8/085402. Epub 2013 Jan 30.

PMID:
23360786
5.

Conductive dense hydrogen.

Eremets MI, Troyan IA.

Nat Mater. 2011 Nov 13;10(12):927-31. doi: 10.1038/nmat3175.

PMID:
22081083
6.

Atomic diffusion in solid molecular hydrogen.

Belonoshko AB, Ramzan M, Mao HK, Ahuja R.

Sci Rep. 2013;3:2340. doi: 10.1038/srep02340.

7.

Ab initio molecular dynamics study of high-pressure melting of beryllium oxide.

Li D, Zhang P, Yan J.

Sci Rep. 2014 Apr 24;4:4707. doi: 10.1038/srep04707.

8.

Vitrification and crystallization of metallic liquid under pressures.

Wang L, Peng C, Wang Y, Zhang Y.

J Phys Condens Matter. 2006 Aug 16;18(32):7559-68. doi: 10.1088/0953-8984/18/32/005. Epub 2006 Jul 25.

PMID:
21690869
9.

Stability of dense liquid carbon dioxide.

Boates B, Teweldeberhan AM, Bonev SA.

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14808-12. doi: 10.1073/pnas.1120243109. Epub 2012 Aug 20.

10.

Melting of ice under pressure.

Schwegler E, Sharma M, Gygi F, Galli G.

Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14779-83. doi: 10.1073/pnas.0808137105. Epub 2008 Sep 22.

11.

Quantum distribution of protons in solid molecular hydrogen at megabar pressures

Kitamura H, Tsuneyuki S, Ogitsu T, Miyake T.

Nature. 2000 Mar 16;404(6775):259-62.

PMID:
10749202
12.

Room-temperature structures of solid hydrogen at high pressures.

Liu H, Zhu L, Cui W, Ma Y.

J Chem Phys. 2012 Aug 21;137(7):074501. doi: 10.1063/1.4745186.

PMID:
22920125
13.

Crystal structure of the pressure-induced metallic phase of SiH4 from ab initio theory.

Kim DY, Scheicher RH, Lebègue S, Prasongkit J, Arnaud B, Alouani M, Ahuja R.

Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16454-9. doi: 10.1073/pnas.0804148105. Epub 2008 Oct 15.

14.

Molybdenum at high pressure and temperature: melting from another solid phase.

Belonoshko AB, Burakovsky L, Chen SP, Johansson B, Mikhaylushkin AS, Preston DL, Simak SI, Swift DC.

Phys Rev Lett. 2008 Apr 4;100(13):135701. Epub 2008 Apr 3.

PMID:
18517968
15.

Ab initio melting curve of molybdenum by the phase coexistence method.

Cazorla C, Gillan MJ, Taioli S, Alfè D.

J Chem Phys. 2007 May 21;126(19):194502.

PMID:
17523817
16.

Theoretical investigation of methane under pressure.

Spanu L, Donadio D, Hohl D, Galli G.

J Chem Phys. 2009 Apr 28;130(16):164520. doi: 10.1063/1.3120487.

PMID:
19405607
17.

Dynamical properties of hydrogen sulphide motion in its clathrate hydrate from ab initio and classical isobaric-isothermal molecular dynamics.

English NJ, Tse JS.

J Phys Chem A. 2011 Jun 16;115(23):6226-32. doi: 10.1021/jp111485w. Epub 2011 Mar 10.

PMID:
21391544
18.

Nuclear quantum effects on the high pressure melting of dense lithium.

Feng Y, Chen J, Alfè D, Li XZ, Wang E.

J Chem Phys. 2015 Feb 14;142(6):064506. doi: 10.1063/1.4907752.

PMID:
25681922
19.

Non-metallic, non-Fermi-liquid resistivity of FeCrAs from 0 to 17 GPa.

Tafti FF, Wu W, Julian SR.

J Phys Condens Matter. 2013 Sep 25;25(38):385601. doi: 10.1088/0953-8984/25/38/385601. Epub 2013 Aug 29.

PMID:
23989034
20.

Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa.

Li J, Zhou X, Li J, Wu Q, Cai L, Dai C.

Rev Sci Instrum. 2012 May;83(5):053902. doi: 10.1063/1.4716459.

PMID:
22667628
Items per page

Supplemental Content

Write to the Help Desk