Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 75

Similar articles for PubMed (Select 23798505)

1.

Fe-doped MnxOy with hierarchical porosity as a high-performance lithium-ion battery anode.

Ma Y, Fang C, Ding B, Ji G, Lee JY.

Adv Mater. 2013 Sep 6;25(33):4646-52. doi: 10.1002/adma.201301906. Epub 2013 Jun 25.

PMID:
23798505
2.

Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications.

Fang B, Kim JH, Kim MS, Yu JS.

Acc Chem Res. 2013 Jul 16;46(7):1397-406. doi: 10.1021/ar300253f. Epub 2012 Dec 27.

PMID:
23270494
3.

Copper doped hollow structured manganese oxide mesocrystals with controlled phase structure and morphology as anode materials for lithium ion battery with improved electrochemical performance.

Li Q, Yin L, Li Z, Wang X, Qi Y, Ma J.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10975-84. doi: 10.1021/am403215j. Epub 2013 Oct 16.

PMID:
24080017
4.

Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping.

Fang X, Guo B, Shi Y, Li B, Hua C, Yao C, Zhang Y, Hu YS, Wang Z, Stucky GD, Chen L.

Nanoscale. 2012 Mar 7;4(5):1541-4. doi: 10.1039/c2nr12017h. Epub 2012 Feb 1.

PMID:
22294160
5.

Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.

Lee SH, Sridhar V, Jung JH, Karthikeyan K, Lee YS, Mukherjee R, Koratkar N, Oh IK.

ACS Nano. 2013 May 28;7(5):4242-51. doi: 10.1021/nn4007253. Epub 2013 Apr 8.

PMID:
23550743
6.

A facile approach toward transition metal oxide hierarchical structures and their lithium storage properties.

Zhang C, Chen J, Zeng Y, Rui X, Zhu J, Zhang W, Xu C, Lim TM, Hng HH, Yan Q.

Nanoscale. 2012 Jun 21;4(12):3718-24. doi: 10.1039/c2nr30525a. Epub 2012 May 22.

PMID:
22618758
7.

Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.

Osiak MJ, Armstrong E, Kennedy T, Torres CM, Ryan KM, O'Dwyer C.

ACS Appl Mater Interfaces. 2013 Aug 28;5(16):8195-202. doi: 10.1021/am4023169. Epub 2013 Aug 16.

PMID:
23952971
8.

Porous doped silicon nanowires for lithium ion battery anode with long cycle life.

Ge M, Rong J, Fang X, Zhou C.

Nano Lett. 2012 May 9;12(5):2318-23. doi: 10.1021/nl300206e. Epub 2012 Apr 11.

PMID:
22486769
9.

Spindle-like mesoporous α-Fe₂O₃ anode material prepared from MOF template for high-rate lithium batteries.

Xu X, Cao R, Jeong S, Cho J.

Nano Lett. 2012 Sep 12;12(9):4988-91. doi: 10.1021/nl302618s. Epub 2012 Aug 14.

PMID:
22881989
10.

Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity.

Shi Y, Guo B, Corr SA, Shi Q, Hu YS, Heier KR, Chen L, Seshadri R, Stucky GD.

Nano Lett. 2009 Dec;9(12):4215-20. doi: 10.1021/nl902423a.

PMID:
19775084
11.

Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery.

Xu GL, Xu YF, Fang JC, Fu F, Sun H, Huang L, Yang S, Sun SG.

ACS Appl Mater Interfaces. 2013 Jul 10;5(13):6316-23. doi: 10.1021/am401355w. Epub 2013 Jun 24.

PMID:
23758592
12.

A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4.

Hariharan S, Saravanan K, Ramar V, Balaya P.

Phys Chem Chem Phys. 2013 Feb 28;15(8):2945-53. doi: 10.1039/c2cp44572g. Epub 2013 Jan 22.

PMID:
23340646
13.

Combination of lightweight elements and nanostructured materials for batteries.

Chen J, Cheng F.

Acc Chem Res. 2009 Jun 16;42(6):713-23. doi: 10.1021/ar800229g.

PMID:
19354236
14.

CoMn(2)O(4) spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries.

Hu L, Zhong H, Zheng X, Huang Y, Zhang P, Chen Q.

Sci Rep. 2012;2:986. doi: 10.1038/srep00986. Epub 2012 Dec 17.

15.

Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid.

Wu XL, Chen LL, Xin S, Yin YX, Guo YG, Kong QS, Xia YZ.

ChemSusChem. 2010 Jun 21;3(6):703-7. doi: 10.1002/cssc.201000035.

PMID:
20480495
16.

Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.

Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS.

ACS Nano. 2011 Apr 26;5(4):3333-8. doi: 10.1021/nn200493r. Epub 2011 Mar 31.

PMID:
21443243
17.

Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?

Yu YX.

Phys Chem Chem Phys. 2013 Oct 21;15(39):16819-27. doi: 10.1039/c3cp51689j. Epub 2013 Sep 4.

PMID:
24002442
18.

Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries.

Wang SH, Hou SS, Kuo PL, Teng H.

ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8477-85. doi: 10.1021/am4019115. Epub 2013 Aug 22.

PMID:
23931907
19.

Controllable synthesis of monodisperse ultrathin SnO₂ nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties.

Xu C, Sun J, Gao L.

Nanoscale. 2012 Sep 7;4(17):5425-30. doi: 10.1039/c2nr31357j. Epub 2012 Jul 26.

PMID:
22832436
20.

General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance.

Wang H, Ma D, Huang X, Huang Y, Zhang X.

Sci Rep. 2012;2:701. doi: 10.1038/srep00701. Epub 2012 Oct 3.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk