Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

Related Citations for PubMed (Select 23792979)

1.

Human occipital cortices differentially exert saccadic suppression: Intracranial recording in children.

Uematsu M, Matsuzaki N, Brown EC, Kojima K, Asano E.

Neuroimage. 2013 Dec;83:224-36. doi: 10.1016/j.neuroimage.2013.06.046. Epub 2013 Jun 20.

PMID:
23792979
2.

Occipital gamma-oscillations modulated during eye movement tasks: simultaneous eye tracking and electrocorticography recording in epileptic patients.

Nagasawa T, Matsuzaki N, Juhász C, Hanazawa A, Shah A, Mittal S, Sood S, Asano E.

Neuroimage. 2011 Oct 15;58(4):1101-9. doi: 10.1016/j.neuroimage.2011.07.043. Epub 2011 Jul 22.

PMID:
21816225
3.

Differential visually-induced gamma-oscillations in human cerebral cortex.

Asano E, Nishida M, Fukuda M, Rothermel R, Juhász C, Sood S.

Neuroimage. 2009 Apr 1;45(2):477-89. doi: 10.1016/j.neuroimage.2008.12.003. Epub 2008 Dec 16.

PMID:
19135157
4.

Animal category-preferential gamma-band responses in the lower- and higher-order visual areas: intracranial recording in children.

Kojima K, Brown EC, Matsuzaki N, Asano E.

Clin Neurophysiol. 2013 Dec;124(12):2368-77. doi: 10.1016/j.clinph.2013.05.030. Epub 2013 Jul 30.

PMID:
23910987
5.

Gamma activity modulated by naming of ambiguous and unambiguous images: intracranial recording.

Cho-Hisamoto Y, Kojima K, Brown EC, Matsuzaki N, Asano E.

Clin Neurophysiol. 2015 Jan;126(1):17-26. doi: 10.1016/j.clinph.2014.03.034. Epub 2014 Apr 18.

PMID:
24815577
6.

Perisaccadic parietal and occipital gamma power in light and in complete darkness.

Forgacs PB, von Gizycki H, Selesnick I, Syed NA, Ebrahim K, Avitable M, Amassian V, Lytton W, Bodis-Wollner I.

Perception. 2008;37(3):419-32.

PMID:
18491719
7.

Spontaneous and visually driven high-frequency oscillations in the occipital cortex: intracranial recording in epileptic patients.

Nagasawa T, Juhász C, Rothermel R, Hoechstetter K, Sood S, Asano E.

Hum Brain Mapp. 2012 Mar;33(3):569-83. doi: 10.1002/hbm.21233. Epub 2011 Mar 22.

PMID:
21432945
8.

Cortico-cortical evoked potentials and stimulation-elicited gamma activity preferentially propagate from lower- to higher-order visual areas.

Matsuzaki N, Juhász C, Asano E.

Clin Neurophysiol. 2013 Jul;124(7):1290-6. doi: 10.1016/j.clinph.2013.02.007. Epub 2013 Mar 20.

PMID:
23523110
9.

γ-oscillations modulated by picture naming and word reading: intracranial recording in epileptic patients.

Wu HC, Nagasawa T, Brown EC, Juhasz C, Rothermel R, Hoechstetter K, Shah A, Mittal S, Fuerst D, Sood S, Asano E.

Clin Neurophysiol. 2011 Oct;122(10):1929-42. doi: 10.1016/j.clinph.2011.03.011. Epub 2011 Apr 17.

PMID:
21498109
10.

Correlates of motor planning and postsaccadic fixation in the macaque monkey lateral geniculate nucleus.

Royal DW, Sáry G, Schall JD, Casagrande VA.

Exp Brain Res. 2006 Jan;168(1-2):62-75. Epub 2005 Sep 7.

PMID:
16151777
11.

Saccades differentially modulate human LGN and V1 responses in the presence and absence of visual stimulation.

Sylvester R, Haynes JD, Rees G.

Curr Biol. 2005 Jan 11;15(1):37-41.

PMID:
15649362
12.

Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.

Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR.

J Neurophysiol. 1996 Jan;75(1):454-68.

PMID:
8822570
13.

Gamma activity modulated by picture and auditory naming tasks: intracranial recording in patients with focal epilepsy.

Kojima K, Brown EC, Matsuzaki N, Rothermel R, Fuerst D, Shah A, Mittal S, Sood S, Asano E.

Clin Neurophysiol. 2013 Sep;124(9):1737-44. doi: 10.1016/j.clinph.2013.01.030. Epub 2013 May 18.

PMID:
23688918
14.

Electrophysiological correlates of human intrasaccadic processing.

Anagnostou E, Kleiser R, Skrandies W.

Exp Brain Res. 2000 Jan;130(2):177-87.

PMID:
10672471
15.

Saccadic modulation of neural responses: possible roles in saccadic suppression, enhancement, and time compression.

Ibbotson MR, Crowder NA, Cloherty SL, Price NS, Mustari MJ.

J Neurosci. 2008 Oct 22;28(43):10952-60. doi: 10.1523/JNEUROSCI.3950-08.2008.

PMID:
18945903
16.

Independent predictors of neuronal adaptation in human primary visual cortex measured with high-gamma activity.

Matsuzaki N, Nagasawa T, Juhász C, Sood S, Asano E.

Neuroimage. 2012 Jan 16;59(2):1639-46. doi: 10.1016/j.neuroimage.2011.09.014. Epub 2011 Sep 16.

PMID:
21945696
17.

Parieto-occipital cortex shows early target selection to faces in a reflexive orienting task.

Morand SM, Harvey M, Grosbras MH.

Cereb Cortex. 2014 Apr;24(4):898-907. doi: 10.1093/cercor/bhs368. Epub 2012 Nov 25.

PMID:
23183710
18.

Neural dynamics of saccadic suppression.

Bremmer F, Kubischik M, Hoffmann KP, Krekelberg B.

J Neurosci. 2009 Oct 7;29(40):12374-83. doi: 10.1523/JNEUROSCI.2908-09.2009.

PMID:
19812313
19.

Analysis of perisaccadic field potentials in the occipitotemporal pathway during active vision.

Purpura KP, Kalik SF, Schiff ND.

J Neurophysiol. 2003 Nov;90(5):3455-78. Epub 2003 Jul 23.

PMID:
12878708
20.

Saccadic suppression induces focal hypooxygenation in the occipital cortex.

Wenzel R, Wobst P, Heekeren HH, Kwong KK, Brandt SA, Kohl M, Obrig H, Dirnagl U, Villringer A.

J Cereb Blood Flow Metab. 2000 Jul;20(7):1103-10.

PMID:
10908044
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk