Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 102

1.

Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.

Zeng Y, Pan Z, Wang L, Ding Y, Xu Q, Xiao S, Deng X.

Physiol Plant. 2014 Feb;150(2):252-70. doi: 10.1111/ppl.12080. Epub 2013 Jul 22.

PMID:
23786612
[PubMed - in process]
2.

A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].

Zeng Y, Pan Z, Ding Y, Zhu A, Cao H, Xu Q, Deng X.

J Exp Bot. 2011 Nov;62(15):5297-309. doi: 10.1093/jxb/err140. Epub 2011 Aug 12.

PMID:
21841170
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development.

Wang YQ, Yang Y, Fei Z, Yuan H, Fish T, Thannhauser TW, Mazourek M, Kochian LV, Wang X, Li L.

J Exp Bot. 2013 Feb;64(4):949-61. doi: 10.1093/jxb/ers375. Epub 2013 Jan 10.

PMID:
23314817
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus.

Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X.

J Exp Bot. 2014 Apr;65(6):1651-71. doi: 10.1093/jxb/eru044. Epub 2014 Mar 5.

PMID:
24600016
[PubMed - in process]
Free PMC Article
5.

Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh.

Cheung AY, McNellis T, Piekos B.

Plant Physiol. 1993 Apr;101(4):1223-1229.

PMID:
12231777
[PubMed - as supplied by publisher]
Free PMC Article
6.
7.

Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts.

Siddique MA, Grossmann J, Gruissem W, Baginsky S.

Plant Cell Physiol. 2006 Dec;47(12):1663-73. Epub 2006 Nov 10.

PMID:
17098784
[PubMed - indexed for MEDLINE]
8.

Characterization of the phosphoproteome of mature Arabidopsis pollen.

Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nühse T, Grossniklaus U.

Plant J. 2012 Oct;72(1):89-101. doi: 10.1111/j.1365-313X.2012.05061.x. Epub 2012 Jul 12.

PMID:
22631563
[PubMed - indexed for MEDLINE]
9.

Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks.

Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S.

Plant Physiol. 2009 Jun;150(2):889-903. doi: 10.1104/pp.109.138677. Epub 2009 Apr 17.

PMID:
19376835
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts.

Angaman DM, Petrizzo R, Hernández-Gras F, Romero-Segura C, Pateraki I, Busquets M, Boronat A.

Plant Methods. 2012 Jan 13;8(1):1. doi: 10.1186/1746-4811-8-1.

PMID:
22243738
[PubMed]
Free PMC Article
11.

Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy.

Sui S, Wang J, Yang B, Song L, Zhang J, Chen M, Liu J, Lu Z, Cai Y, Chen S, Bi W, Zhu Y, He F, Qian X.

Proteomics. 2008 May;8(10):2024-34. doi: 10.1002/pmic.200700896.

PMID:
18491316
[PubMed - indexed for MEDLINE]
12.

Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses.

Hem S, Gherardini PF, Osorio y Fortéa J, Hourdel V, Morales MA, Watanabe R, Pescher P, Kuzyk MA, Smith D, Borchers CH, Zilberstein D, Helmer-Citterich M, Namane A, Späth GF.

Proteomics. 2010 Nov;10(21):3868-83. doi: 10.1002/pmic.201000305.

PMID:
20960452
[PubMed - indexed for MEDLINE]
14.

Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell.

Waters MT, Fray RG, Pyke KA.

Plant J. 2004 Aug;39(4):655-67.

PMID:
15272881
[PubMed - indexed for MEDLINE]
15.

Analysis of Phosphoproteome in Rice Pistil.

Wang K, Zhao Y, Li M, Gao F, Yang MK, Wang X, Li S, Yang P.

Proteomics. 2014 Jul 29. doi: 10.1002/pmic.201400004. [Epub ahead of print]

PMID:
25074045
[PubMed - as supplied by publisher]
16.

An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts.

Pateraki I, Renato M, Azcón-Bieto J, Boronat A.

Plant J. 2013 Apr;74(1):74-85. doi: 10.1111/tpj.12109. Epub 2013 Feb 18.

PMID:
23302027
[PubMed - indexed for MEDLINE]
17.

A survey of the Arabidopsis thaliana mitochondrial phosphoproteome.

Ito J, Taylor NL, Castleden I, Weckwerth W, Millar AH, Heazlewood JL.

Proteomics. 2009 Sep;9(17):4229-40. doi: 10.1002/pmic.200900064.

PMID:
19688752
[PubMed - indexed for MEDLINE]
18.

An initial characterization of the serum phosphoproteome.

Zhou W, Ross MM, Tessitore A, Ornstein D, Vanmeter A, Liotta LA, Petricoin EF 3rd.

J Proteome Res. 2009 Dec;8(12):5523-31. doi: 10.1021/pr900603n.

PMID:
19824718
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Design of chimeric expression elements that confer high-level gene activity in chromoplasts.

Caroca R, Howell KA, Hasse C, Ruf S, Bock R.

Plant J. 2013 Feb;73(3):368-79. doi: 10.1111/tpj.12031. Epub 2012 Dec 10.

PMID:
23004223
[PubMed - indexed for MEDLINE]
20.

Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.

Nagano K, Shinkawa T, Mutoh H, Kondoh O, Morimoto S, Inomata N, Ashihara M, Ishii N, Aoki Y, Haramura M.

Proteomics. 2009 May;9(10):2861-74. doi: 10.1002/pmic.200800667.

PMID:
19415658
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk