Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 115

Similar articles for PubMed (Select 23774294)

1.

Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

Li C, Xu Y, Jiang W, Dong X, Wang D, Liu B.

Bioresour Technol. 2013 Sep;143:46-52. doi: 10.1016/j.biortech.2013.05.114. Epub 2013 Jun 4.

PMID:
23774294
2.

Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance.

Zimmermannova O, Salazar A, Sychrova H, Ramos J.

FEMS Yeast Res. 2015 Jun;15(4). pii: fov029. doi: 10.1093/femsyr/fov029. Epub 2015 May 27.

PMID:
26019147
3.

Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review.

Gutiérrez JC, Amaro F, Martín-González A.

Front Microbiol. 2015 Feb 20;6:48. doi: 10.3389/fmicb.2015.00048. eCollection 2015.

4.

Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae.

Ma N, Li C, Dong X, Wang D, Xu Y.

J Basic Microbiol. 2015 Feb 26. doi: 10.1002/jobm.201400847. [Epub ahead of print]

PMID:
25721585
5.

The role of heavy metals in autoimmunity.

Cojocaru M, Chicoş B.

Rom J Intern Med. 2014;52(3):189-91. Review.

PMID:
25509564
6.

Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341.

Yang J, Cao J, Xing G, Yuan H.

Bioresour Technol. 2014 Nov 8;175C:537-544. doi: 10.1016/j.biortech.2014.10.124. [Epub ahead of print]

PMID:
25459865
7.

The high-capacity specific fructose facilitator ZrFfz1 is essential for the fructophilic behavior of Zygosaccharomyces rouxii CBS 732T.

Leandro MJ, Cabral S, Prista C, Loureiro-Dias MC, Sychrová H.

Eukaryot Cell. 2014 Nov;13(11):1371-9. doi: 10.1128/EC.00137-14. Epub 2014 Aug 29.

8.

Resistance through inhibition: ectopic expression of serine protease inhibitor offers stress tolerance via delayed senescence in yeast cell.

Joshi RS, Tanpure RS, Singh RK, Gupta VS, Giri AP.

Biochem Biophys Res Commun. 2014 Sep 26;452(3):361-8. doi: 10.1016/j.bbrc.2014.08.075. Epub 2014 Aug 23.

PMID:
25159848
9.

A heavy metal-associated protein (AcHMA1) from the halophyte, Atriplex canescens (Pursh) Nutt., confers tolerance to iron and other abiotic stresses when expressed in Saccharomyces cerevisiae.

Sun XH, Yu G, Li JT, Jia P, Zhang JC, Jia CG, Zhang YH, Pan HY.

Int J Mol Sci. 2014 Aug 22;15(8):14891-906. doi: 10.3390/ijms150814891.

10.

Expression of key hydrolases for soy sauce fermentation in Zygosaccharomyces rouxii.

Yuzuki M, Matsushima K, Koyama Y.

J Biosci Bioeng. 2015 Jan;119(1):92-4. doi: 10.1016/j.jbiosc.2014.06.015. Epub 2014 Jul 26.

PMID:
25073685
11.

Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.

Dakal TC, Solieri L, Giudici P.

Int J Food Microbiol. 2014 Aug 18;185:140-57. doi: 10.1016/j.ijfoodmicro.2014.05.015. Epub 2014 May 25. Review.

PMID:
24973621
12.

Osmotolerant yeast species differ in basic physiological parameters and in tolerance of non-osmotic stresses.

Bubnová M, Zemančíková J, Sychrová H.

Yeast. 2014 Aug;31(8):309-21. doi: 10.1002/yea.3024. Epub 2014 Jul 11.

PMID:
24962688
13.

Molecular tools and protocols for engineering the acid-tolerant yeast Zygosaccharomyces bailii as a potential cell factory.

Branduardi P, Dato L, Porro D.

Methods Mol Biol. 2014;1152:63-85. doi: 10.1007/978-1-4939-0563-8_4.

PMID:
24744027
14.

Quantitative phenotypic analysis of multistress response in Zygosaccharomyces rouxii complex.

Solieri L, Dakal TC, Bicciato S.

FEMS Yeast Res. 2014 Jun;14(4):586-600. doi: 10.1111/1567-1364.12146. Epub 2014 Mar 13.

15.

Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola.

Andreeva N, Ryazanova L, Dmitriev V, Kulakovskaya T, Kulaev I.

Folia Microbiol (Praha). 2014 Sep;59(5):381-9. doi: 10.1007/s12223-014-0310-x. Epub 2014 Feb 16.

PMID:
24531869
16.

Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

Li C, Jiang W, Ma N, Zhu Y, Dong X, Wang D, Meng X, Xu Y.

Bioresour Technol. 2014 Mar;155:116-21. doi: 10.1016/j.biortech.2013.12.098. Epub 2013 Dec 30.

PMID:
24440489
17.

Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M.

PLoS One. 2013 Sep 4;8(9):e73936. doi: 10.1371/journal.pone.0073936. eCollection 2013.

18.

Adaptation of the osmotolerant yeast Zygosaccharomyces rouxii to an osmotic environment through copy number amplification of FLO11D.

Watanabe J, Uehara K, Mogi Y.

Genetics. 2013 Oct;195(2):393-405. doi: 10.1534/genetics.113.154690. Epub 2013 Jul 26.

19.

ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii.

Leandro MJ, Sychrová H, Prista C, Loureiro-Dias MC.

PLoS One. 2013 Jul 2;8(7):e68165. doi: 10.1371/journal.pone.0068165. Print 2013.

20.

Comparative analysis of salt-tolerant gene HOG1 in a Zygosaccharomyces rouxii mutant strain and its parent strain.

Wei Y, Wang C, Wang M, Cao X, Hou L.

J Sci Food Agric. 2013 Aug 30;93(11):2765-70. doi: 10.1002/jsfa.6096. Epub 2013 Jun 5.

PMID:
23696268
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk