Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 213

Similar articles for PubMed (Select 23773816)

1.

Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology.

Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K.

Biomaterials. 2013 Sep;34(28):6706-16. doi: 10.1016/j.biomaterials.2013.05.038. Epub 2013 Jun 14.

PMID:
23773816
2.

In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology.

Liu Y, Zhang L, Zhou G, Li Q, Liu W, Yu Z, Luo X, Jiang T, Zhang W, Cao Y.

Biomaterials. 2010 Mar;31(8):2176-83. doi: 10.1016/j.biomaterials.2009.11.080. Epub 2009 Dec 21.

PMID:
20022366
3.

Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.

Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.

Biomaterials. 2006 Dec;27(36):6123-37. Epub 2006 Aug 30.

PMID:
16945410
4.

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.

Int J Nanomedicine. 2013;8:4197-213. doi: 10.2147/IJN.S50685. Epub 2013 Nov 1.

5.

Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.

Han SH, Kim YH, Park MS, Kim IA, Shin JW, Yang WI, Jee KS, Park KD, Ryu GH, Lee JW.

J Biomed Mater Res A. 2008 Dec 15;87(4):850-61. doi: 10.1002/jbm.a.31828.

PMID:
18200543
6.

Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

Son JS, Kim SG, Oh JS, Appleford M, Oh S, Ong JL, Lee KB.

J Biomed Mater Res A. 2011 Dec 15;99(4):638-47. doi: 10.1002/jbm.a.33223. Epub 2011 Sep 27.

PMID:
21954052
7.

Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).

Jung Y, Park MS, Lee JW, Kim YH, Kim SH, Kim SH.

Biomaterials. 2008 Dec;29(35):4630-6. doi: 10.1016/j.biomaterials.2008.08.031. Epub 2008 Sep 18.

PMID:
18804279
8.

Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold.

Zhou XZ, Leung VY, Dong QR, Cheung KM, Chan D, Lu WW.

Int J Artif Organs. 2008 Jun;31(6):480-9.

PMID:
18609500
9.

Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering.

Kim JY, Lee TJ, Cho DW, Kim BS.

J Biomater Sci Polym Ed. 2010;21(6):951-62. doi: 10.1163/156856209X458380.

PMID:
20482995
10.

Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.

Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q, Ge Y, Xu Y.

Biofabrication. 2010 Jun;2(2):025002. doi: 10.1088/1758-5082/2/2/025002. Epub 2010 Mar 10.

PMID:
20811130
11.

[Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].

Liu X, Zhou GD, Lü XJ, Liu TY, Zhang WJ, Liu W, Cao YL.

Zhonghua Yi Xue Za Zhi. 2007 Jul 17;87(27):1929-33. Chinese.

PMID:
17923021
12.

Computer-aided approach for customized cell-based defect reconstruction.

Meyer U, Neunzehn J, Wiesmann HP.

Methods Mol Biol. 2012;868:27-43. doi: 10.1007/978-1-61779-764-4_2.

PMID:
22692602
13.

Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.

Chen CH, Shyu VB, Chen JP, Lee MY.

Biofabrication. 2014 Mar;6(1):015004. doi: 10.1088/1758-5082/6/1/015004. Epub 2014 Jan 15.

PMID:
24429581
14.

Repair of porcine articular cartilage defect with a biphasic osteochondral composite.

Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS.

J Orthop Res. 2007 Oct;25(10):1277-90.

PMID:
17576624
15.

Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): In vivo performance in adult rabbits.

Xie J, Han Z, Naito M, Maeyama A, Kim SH, Kim YH, Matsuda T.

J Biomed Mater Res B Appl Biomater. 2010 Jul;94(1):80-8. doi: 10.1002/jbm.b.31627.

PMID:
20336738
16.

Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.

Li WJ, Cooper JA Jr, Mauck RL, Tuan RS.

Acta Biomater. 2006 Jul;2(4):377-85. Epub 2006 May 6.

PMID:
16765878
17.

A study on a tissue-engineered bone using rhBMP-2 induced periosteal cells with a porous nano-hydroxyapatite/collagen/poly(L-lactic acid) scaffold.

Zhang C, Hu YY, Cui FZ, Zhang SM, Ruan DK.

Biomed Mater. 2006 Jun;1(2):56-62. doi: 10.1088/1748-6041/1/2/002. Epub 2006 Apr 6.

PMID:
18460757
18.

Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system.

Kim JY, Yoon JJ, Park EK, Kim DS, Kim SY, Cho DW.

Biofabrication. 2009 Mar;1(1):015002. doi: 10.1088/1758-5082/1/1/015002. Epub 2009 Mar 20.

PMID:
20811097
19.

Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.

Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z.

J Biomed Mater Res A. 2010 Jul;94(1):259-70. doi: 10.1002/jbm.a.32691.

PMID:
20166224
20.

Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.

Cui Z, Nelson B, Peng Y, Li K, Pilla S, Li WJ, Turng LS, Shen C.

Mater Sci Eng C Mater Biol Appl. 2012 Aug 1;32(6):1674-81. doi: 10.1016/j.msec.2012.04.064. Epub 2012 Apr 29.

PMID:
24364976
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk