Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 335

1.

Engineering of the growth environment of microalgae with high biomass and lipid productivity.

Huang YT, Lee HT, Lai CW.

J Nanosci Nanotechnol. 2013 Mar;13(3):2117-21.

PMID:
23755654
2.

Selection of microalgae for lipid production under high levels carbon dioxide.

Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM.

Bioresour Technol. 2010 Jan;101 Suppl 1:S71-4. doi: 10.1016/j.biortech.2009.03.030. Epub 2009 Apr 11.

PMID:
19362826
3.

Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4.

Nakanishi A, Aikawa S, Ho SH, Chen CY, Chang JS, Hasunuma T, Kondo A.

Bioresour Technol. 2014;152:247-52. doi: 10.1016/j.biortech.2013.11.009. Epub 2013 Nov 14.

PMID:
24296120
4.

Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp.

Harwati TU, Willke T, Vorlop KD.

Bioresour Technol. 2012 Oct;121:54-60. doi: 10.1016/j.biortech.2012.06.098. Epub 2012 Jul 6.

PMID:
22858468
5.

Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide.

Nayak M, Rath SS, Thirunavoukkarasu M, Panda PK, Mishra BK, Mohanty RC.

J Microbiol Biotechnol. 2013 Sep 28;23(9):1260-8.

6.

The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.

Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S.

Appl Microbiol Biotechnol. 2011 May;90(4):1429-41. doi: 10.1007/s00253-011-3170-1. Epub 2011 Mar 23.

PMID:
21431397
7.

CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval.

Devi MP, Mohan SV.

Bioresour Technol. 2012 May;112:116-23. doi: 10.1016/j.biortech.2012.02.095. Epub 2012 Feb 27.

PMID:
22440578
8.

Enhanced production of biomass and lipids by supplying CO2 in marine microalga Dunaliella sp.

Jeon H, Lee Y, Chang KS, Lee CG, Jin E.

J Microbiol. 2013 Dec;51(6):773-6. doi: 10.1007/s12275-013-3256-9. Epub 2013 Dec 19.

PMID:
24385354
9.

Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal.

Yao L, Shi J, Miao X.

PLoS One. 2015 Sep 29;10(9):e0139117. doi: 10.1371/journal.pone.0139117. eCollection 2015.

10.

Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15.

Xia L, Ge H, Zhou X, Zhang D, Hu C.

Bioresour Technol. 2013 Sep;144:261-7. doi: 10.1016/j.biortech.2013.06.112. Epub 2013 Jul 4.

PMID:
23876654
11.

Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation.

Cheirsilp B, Torpee S.

Bioresour Technol. 2012 Apr;110:510-6. doi: 10.1016/j.biortech.2012.01.125. Epub 2012 Feb 8.

PMID:
22361073
12.

Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions.

Ho SH, Chang JS, Lai YY, Chen CN.

Bioresour Technol. 2014 Mar;156:108-16. doi: 10.1016/j.biortech.2014.01.017. Epub 2014 Jan 17.

PMID:
24491294
13.

A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes.

Santos CA, Ferreira ME, da Silva TL, Gouveia L, Novais JM, Reis A.

J Ind Microbiol Biotechnol. 2011 Aug;38(8):909-17. doi: 10.1007/s10295-010-0860-0. Epub 2010 Sep 8.

PMID:
20824486
14.

Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels.

Wang XW, Liang JR, Luo CS, Chen CP, Gao YH.

Bioresour Technol. 2014 Jun;161:124-30. doi: 10.1016/j.biortech.2014.03.012. Epub 2014 Mar 13.

PMID:
24698739
15.

Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition.

Lin TS, Wu JY.

Bioresour Technol. 2015 May;184:100-7. doi: 10.1016/j.biortech.2014.11.005. Epub 2014 Nov 18.

PMID:
25443671
16.

Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation.

Ho SH, Chen CN, Lai YY, Lu WB, Chang JS.

Bioresour Technol. 2014 Jul;163:128-35. doi: 10.1016/j.biortech.2014.04.028. Epub 2014 Apr 19.

PMID:
24796513
17.

The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.

Mutanda T, Karthikeyan S, Bux F.

Appl Biochem Biotechnol. 2011 Aug;164(7):1126-38. doi: 10.1007/s12010-011-9199-x. Epub 2011 Feb 23.

PMID:
21347654
18.

Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2.

Ruangsomboon S.

Bioresour Technol. 2012 Apr;109:261-5. doi: 10.1016/j.biortech.2011.07.025. Epub 2011 Jul 19.

PMID:
21803571
19.

Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

Cheah WY, Show PL, Chang JS, Ling TC, Juan JC.

Bioresour Technol. 2015 May;184:190-201. doi: 10.1016/j.biortech.2014.11.026. Epub 2014 Nov 20. Review.

PMID:
25497054
20.

Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.

Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS.

Bioresour Technol. 2011 Oct;102(19):9135-42. doi: 10.1016/j.biortech.2011.06.091. Epub 2011 Jul 13.

PMID:
21802285
Items per page

Supplemental Content

Write to the Help Desk