Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Improved N(α)-acetylated peptide enrichment following dimethyl labeling and SCX.

Chen SH, Chen CR, Chen SH, Li DT, Hsu JL.

J Proteome Res. 2013 Jul 5;12(7):3277-87. doi: 10.1021/pr400127j. Epub 2013 Jun 19.

PMID:
23745983
2.

Strong cation exchange (SCX) based analytical methods for the targeted analysis of protein post-translational modifications.

Mohammed S, Heck A Jr.

Curr Opin Biotechnol. 2011 Feb;22(1):9-16. doi: 10.1016/j.copbio.2010.09.005. Epub 2010 Oct 12. Review.

PMID:
20926283
3.

Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.

Helsens K, Van Damme P, Degroeve S, Martens L, Arnesen T, Vandekerckhove J, Gevaert K.

J Proteome Res. 2011 Aug 5;10(8):3578-89. doi: 10.1021/pr2002325. Epub 2011 Jun 20.

PMID:
21619078
4.

Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS).

Doucet A, Kleifeld O, Kizhakkedathu JN, Overall CM.

Methods Mol Biol. 2011;753:273-87. doi: 10.1007/978-1-61779-148-2_18.

PMID:
21604129
5.

Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC-MS/MS.

Shen PT, Hsu JL, Chen SH.

Anal Chem. 2007 Dec 15;79(24):9520-30. Epub 2007 Nov 15.

PMID:
18001127
6.

Strong cation exchange chromatography in analysis of posttranslational modifications: innovations and perspectives.

Edelmann MJ.

J Biomed Biotechnol. 2011;2011:936508. doi: 10.1155/2011/936508. Epub 2011 Nov 17. Review.

7.

Selecting protein N-terminal peptides by combined fractional diagonal chromatography.

Staes A, Impens F, Van Damme P, Ruttens B, Goethals M, Demol H, Timmerman E, Vandekerckhove J, Gevaert K.

Nat Protoc. 2011 Jul 14;6(8):1130-41. doi: 10.1038/nprot.2011.355.

PMID:
21799483
8.

Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

Kleifeld O, Doucet A, Prudova A, auf dem Keller U, Gioia M, Kizhakkedathu JN, Overall CM.

Nat Protoc. 2011 Sep 22;6(10):1578-611. doi: 10.1038/nprot.2011.382.

PMID:
21959240
9.
10.

Post-digestion ¹⁸O exchange/labeling for quantitative shotgun proteomics of membrane proteins.

Ye X, Luke BT, Johann DJ Jr, Chan KC, Prieto DA, Ono A, Veenstra TD, Blonder J.

Methods Mol Biol. 2012;893:223-40. doi: 10.1007/978-1-61779-885-6_15.

PMID:
22665304
11.

Identification and analysis of the acetylated status of poplar proteins reveals analogous N-terminal protein processing mechanisms with other eukaryotes.

Liu CC, Zhu HY, Dong XM, Ning DL, Wang HX, Li WH, Yang CP, Wang BC.

PLoS One. 2013;8(3):e58681. doi: 10.1371/journal.pone.0058681. Epub 2013 Mar 11.

12.

A proteome-scale study on in vivo protein Nα-acetylation using an optimized method.

Zhang X, Ye J, Engholm-Keller K, Højrup P.

Proteomics. 2011 Jan;11(1):81-93. doi: 10.1002/pmic.201000453. Epub 2010 Dec 6.

PMID:
21182196
13.

Exploring new proteome space: combining Lys-N proteolytic digestion and strong cation exchange (SCX) separation in peptide-centric MS-driven proteomics.

Taouatas N, Mohammed S, Heck AJ.

Methods Mol Biol. 2011;753:157-67. doi: 10.1007/978-1-61779-148-2_11.

PMID:
21604122
14.

Strong cation exchange-based fractionation of Lys-N-generated peptides facilitates the targeted analysis of post-translational modifications.

Taouatas N, Altelaar AF, Drugan MM, Helbig AO, Mohammed S, Heck AJ.

Mol Cell Proteomics. 2009 Jan;8(1):190-200. doi: 10.1074/mcp.M800285-MCP200. Epub 2008 Sep 29.

15.

Studies on peptide acetylation for stable-isotope labeling after 1-D PAGE separation in quantitative proteomics.

Yu Y, Cui J, Wang X, Liu Y, Yang P.

Proteomics. 2004 Oct;4(10):3112-20.

PMID:
15378704
16.

Integrated SDS removal and peptide separation by strong-cation exchange liquid chromatography for SDS-assisted shotgun proteome analysis.

Sun D, Wang N, Li L.

J Proteome Res. 2012 Feb 3;11(2):818-28. doi: 10.1021/pr200676v. Epub 2012 Jan 24.

PMID:
22214374
17.

Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase.

Van Damme P, Evjenth R, Foyn H, Demeyer K, De Bock PJ, Lillehaug JR, Vandekerckhove J, Arnesen T, Gevaert K.

Mol Cell Proteomics. 2011 May;10(5):M110.004580. doi: 10.1074/mcp.M110.004580. Epub 2011 Mar 7.

18.

Towards the N-terminal acetylome: an N-terminal acetylated peptide enrichment method using CNBr-activated sepharose resin.

Zhang X, Højrup P.

Methods Mol Biol. 2013;981:47-56. doi: 10.1007/978-1-62703-305-3_5.

PMID:
23381853
19.

Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α-acetylation features.

Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C.

Mol Cell Proteomics. 2012 Jun;11(6):M111.015131. doi: 10.1074/mcp.M111.015131. Epub 2012 Jan 5.

20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk