Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Building reactive copper centers in human carbonic anhydrase II.

Song H, Weitz AC, Hendrich MP, Lewis EA, Emerson JP.

J Biol Inorg Chem. 2013 Aug;18(6):595-8. doi: 10.1007/s00775-013-1009-1. Epub 2013 Jun 7.

2.

Revisiting zinc coordination in human carbonic anhydrase II.

Song H, Wilson DL, Farquhar ER, Lewis EA, Emerson JP.

Inorg Chem. 2012 Oct 15;51(20):11098-105. doi: 10.1021/ic301645j. Epub 2012 Oct 3.

3.

The copper centers of tyramine β-monooxygenase and its catalytic-site methionine variants: an X-ray absorption study.

Hess CR, Klinman JP, Blackburn NJ.

J Biol Inorg Chem. 2010 Nov;15(8):1195-207. doi: 10.1007/s00775-010-0677-3. Epub 2010 Jun 11.

4.

Metal-histidine-glutamate as a regulator of enzymatic cycles: a case study of carbonic anhydrase.

Frison G, Ohanessian G.

Phys Chem Chem Phys. 2009 Jan 14;11(2):374-83. doi: 10.1039/b812916a. Epub 2008 Nov 5.

PMID:
19088994
5.

Weakly coupled biologically relevant Cu(II)₂(μ-η¹:η¹-O₂) cis-peroxo adduct that binds side-on to additional metal ions.

Dalle KE, Gruene T, Dechert S, Demeshko S, Meyer F.

J Am Chem Soc. 2014 May 21;136(20):7428-34. doi: 10.1021/ja5025047. Epub 2014 May 9.

PMID:
24766458
6.

Probing determinants of the metal ion selectivity in carbonic anhydrase using mutagenesis.

McCall KA, Fierke CA.

Biochemistry. 2004 Apr 6;43(13):3979-86.

PMID:
15049705
7.

Thermodynamic parameters for the association of fluorinated benzenesulfonamides with bovine carbonic anhydrase II.

Krishnamurthy VM, Bohall BR, Kim CY, Moustakas DT, Christianson DW, Whitesides GM.

Chem Asian J. 2007 Jan 8;2(1):94-105.

9.

Fluorescence lifetime imaging of physiological free Cu(II) levels in live cells with a Cu(II)-selective carbonic anhydrase-based biosensor.

McCranor BJ, Szmacinski H, Zeng HH, Stoddard AK, Hurst T, Fierke CA, Lakowicz JR, Thompson RB.

Metallomics. 2014 May;6(5):1034-42. doi: 10.1039/c3mt00305a.

10.

Ultrahigh resolution crystal structures of human carbonic anhydrases I and II complexed with "two-prong" inhibitors reveal the molecular basis of high affinity.

Jude KM, Banerjee AL, Haldar MK, Manokaran S, Roy B, Mallik S, Srivastava DK, Christianson DW.

J Am Chem Soc. 2006 Mar 8;128(9):3011-8.

11.

Tuning the activity of catechol oxidase model complexes by geometric changes of the dicopper core.

Ackermann J, Meyer F, Kaifer E, Pritzkow H.

Chemistry. 2002 Jan 4;8(1):247-58.

PMID:
11822456
12.

Thermodynamics of metal ion binding. 1. Metal ion binding by wild-type carbonic anhydrase.

DiTusa CA, Christensen T, McCall KA, Fierke CA, Toone EJ.

Biochemistry. 2001 May 8;40(18):5338-44.

PMID:
11330996
13.

Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.

Mecinović J, Snyder PW, Mirica KA, Bai S, Mack ET, Kwant RL, Moustakas DT, Héroux A, Whitesides GM.

J Am Chem Soc. 2011 Sep 7;133(35):14017-26. doi: 10.1021/ja2045293. Epub 2011 Aug 15.

14.

Dynamics of reactive oxygen species generation in the presence of copper(II)-histidine complex and cysteine.

Ząbek-Adamska A, Drożdż R, Naskalski JW.

Acta Biochim Pol. 2013;60(4):565-71. Epub 2013 Dec 15.

16.

Structural analysis of charge discrimination in the binding of inhibitors to human carbonic anhydrases I and II.

Srivastava DK, Jude KM, Banerjee AL, Haldar M, Manokaran S, Kooren J, Mallik S, Christianson DW.

J Am Chem Soc. 2007 May 2;129(17):5528-37. Epub 2007 Apr 4.

17.

Anion complexes of Cu(II) and Co(II) bovine carbonic anhydrase as models for the copper site of blue copper proteins.

Morpurgo L, Finazzi Agrò A, Rotilio G, Mondovì B.

Eur J Biochem. 1976 May 1;64(2):453-7.

18.

The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase.

Strange RW, Dodd FE, Abraham ZH, Grossmann JG, Brüser T, Eady RR, Smith BE, Hasnain SS.

Nat Struct Biol. 1995 Apr;2(4):287-92. Erratum in: Nat Struct Biol 1995 Oct;2(10):912.

PMID:
7796265
19.

Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

Rogez-Florent T, Duhamel L, Goossens L, Six P, Drucbert AS, Depreux P, Danzé PM, Landy D, Goossens JF, Foulon C.

J Mol Recognit. 2014 Jan;27(1):46-56. doi: 10.1002/jmr.2330.

PMID:
24375583
20.

Appraisal of sildenafil binding on the structure and promiscuous esterase activity of native and histidine-modified forms of carbonic anhydrase II.

Mahdiuni H, Bijari N, Varzandian M, Ghadami SA, Khazaei M, Nikbakht MR, Khodarahmi R.

Biophys Chem. 2013 May-Jun;175-176:1-16. doi: 10.1016/j.bpc.2013.02.003. Epub 2013 Feb 19.

PMID:
23500601
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk