Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Neurotoxicology of bis(n)-tacrines on Blattella germanica and Drosophila melanogaster acetylcholinesterase.

Mutunga JM, Boina DR, Anderson TD, Bloomquist JR, Carlier PR, Wong DM, Lam PC, Totrov MM.

Arch Insect Biochem Physiol. 2013 Aug;83(4):180-94. doi: 10.1002/arch.21104. Epub 2013 Jun 5.

2.

Homodimeric tacrine congeners as acetylcholinesterase inhibitors.

Hu MK, Wu LJ, Hsiao G, Yen MH.

J Med Chem. 2002 May 23;45(11):2277-82.

PMID:
12014965
3.

Design, synthesis and biological evaluation of organophosphorous-homodimers as dual binding site acetylcholinesterase inhibitors.

Xie R, Zhao Q, Zhang T, Fang J, Mei X, Ning J, Tang Y.

Bioorg Med Chem. 2013 Jan 1;21(1):278-82. doi: 10.1016/j.bmc.2012.10.030. Epub 2012 Oct 30.

PMID:
23200223
4.

Induction of soluble AChE expression via alternative splicing by chemical stress in Drosophila melanogaster.

Kim YH, Kwon DH, Ahn HM, Koh YH, Lee SH.

Insect Biochem Mol Biol. 2014 May;48:75-82. doi: 10.1016/j.ibmb.2014.03.001. Epub 2014 Mar 15.

PMID:
24637386
5.

Homology built model of acetylcholinesterase from Drosophila melanogaster.

Stojan J.

J Enzyme Inhib. 1999;14(3):193-201.

PMID:
10445043
6.

Inhibitor profile of bis(n)-tacrines and N-methylcarbamates on acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi.

Swale DR, Tong F, Temeyer KB, Li A, Lam PC, Totrov MM, Carlier PR, Pérez de León AA, Bloomquist JR.

Pestic Biochem Physiol. 2013 Jul 1;106(3). doi: 10.1016/j.pestbp.2013.03.005.

7.
8.

Functional analysis and molecular characterization of two acetylcholinesterases from the German cockroach, Blattella germanica.

Kim YH, Choi JY, Je YH, Koh YH, Lee SH.

Insect Mol Biol. 2010 Dec;19(6):765-76. doi: 10.1111/j.1365-2583.2010.01036.x.

PMID:
20738424
9.

Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.

Wong DM, Greenblatt HM, Dvir H, Carlier PR, Han YF, Pang YP, Silman I, Sussman JL.

J Am Chem Soc. 2003 Jan 15;125(2):363-73.

PMID:
12517147
10.

Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge.

Rydberg EH, Brumshtein B, Greenblatt HM, Wong DM, Shaya D, Williams LD, Carlier PR, Pang YP, Silman I, Sussman JL.

J Med Chem. 2006 Sep 7;49(18):5491-500.

PMID:
16942022
11.

Synthesis of Drosophila melanogaster acetylcholinesterase gene using yeast preferred codons and its expression in Pichia pastoris.

Wu AB, Chen HD, Tang ZZ, Ye BW, Liu WJ, Jia HY, Zhang DB.

Chem Biol Interact. 2008 Sep 25;175(1-3):403-5. doi: 10.1016/j.cbi.2008.04.020. Epub 2008 Apr 29.

PMID:
18514176
12.

Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors.

Harel M, Kryger G, Rosenberry TL, Mallender WD, Lewis T, Fletcher RJ, Guss JM, Silman I, Sussman JL.

Protein Sci. 2000 Jun;9(6):1063-72.

13.

Inhibitors tethered near the acetylcholinesterase active site serve as molecular rulers of the peripheral and acylation sites.

Johnson JL, Cusack B, Hughes TF, McCullough EH, Fauq A, Romanovskis P, Spatola AF, Rosenberry TL.

J Biol Chem. 2003 Oct 3;278(40):38948-55. Epub 2003 Jul 8.

14.

Effects of Anticholinesterases on Catalysis and Induced Conformational Change of the Peripheral Anionic Site of Murine Acetylcholinesterase.

Tong F, Islam RM, Carlier PR, Ma M, Ekström F, Bloomquist JR.

Pestic Biochem Physiol. 2013 Jul 1;106(3):79-84.

15.

Structural basis of femtomolar inhibitors for acetylcholinesterase subtype selectivity: insights from computational simulations.

Zhu XL, Yu NX, Hao GF, Yang WC, Yang GF.

J Mol Graph Model. 2013 Apr;41:55-60. doi: 10.1016/j.jmgm.2013.01.004. Epub 2013 Feb 4.

PMID:
23500627
16.

1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.

Di Pietro O, Viayna E, Vicente-García E, Bartolini M, Ramón R, Juárez-Jiménez J, Clos MV, Pérez B, Andrisano V, Luque FJ, Lavilla R, Muñoz-Torrero D.

Eur J Med Chem. 2014 Feb 12;73:141-52. doi: 10.1016/j.ejmech.2013.12.008. Epub 2013 Dec 18.

PMID:
24389509
17.

Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis.

Carlier PR, Han YF, Chow ES, Li CP, Wang H, Lieu TX, Wong HS, Pang YP.

Bioorg Med Chem. 1999 Feb;7(2):351-7.

PMID:
10218828
18.

Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE.

Alonso D, Dorronsoro I, Rubio L, Muñoz P, García-Palomero E, Del Monte M, Bidon-Chanal A, Orozco M, Luque FJ, Castro A, Medina M, Martínez A.

Bioorg Med Chem. 2005 Dec 15;13(24):6588-97. Epub 2005 Oct 17.

PMID:
16230018
19.

Tacrine-melatonin hybrids as multifunctional agents for Alzheimer's disease, with cholinergic, antioxidant, and neuroprotective properties.

Fernández-Bachiller MI, Pérez C, Campillo NE, Páez JA, González-Muñoz GC, Usán P, García-Palomero E, López MG, Villarroya M, García AG, Martínez A, Rodríguez-Franco MI.

ChemMedChem. 2009 May;4(5):828-41. doi: 10.1002/cmdc.200800414.

PMID:
19308922
20.

Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.

Xie SS, Wang X, Jiang N, Yu W, Wang KD, Lan JS, Li ZR, Kong LY.

Eur J Med Chem. 2015 May 5;95:153-65. doi: 10.1016/j.ejmech.2015.03.040. Epub 2015 Mar 20.

PMID:
25812965
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk