Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 154

1.

Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.

Buchanan CF, Voigt EE, Szot CS, Freeman JW, Vlachos PP, Rylander MN.

Tissue Eng Part C Methods. 2014 Jan;20(1):64-75. doi: 10.1089/ten.TEC.2012.0731. Epub 2013 Jul 12.

2.

Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.

Buchanan CF, Verbridge SS, Vlachos PP, Rylander MN.

Cell Adh Migr. 2014;8(5):517-24. doi: 10.4161/19336918.2014.970001.

3.

A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.

Chen MB, Srigunapalan S, Wheeler AR, Simmons CA.

Lab Chip. 2013 Jul 7;13(13):2591-8. doi: 10.1039/c3lc00051f. Epub 2013 Mar 25.

PMID:
23525275
4.

3D in vitro bioengineered tumors based on collagen I hydrogels.

Szot CS, Buchanan CF, Freeman JW, Rylander MN.

Biomaterials. 2011 Nov;32(31):7905-12. doi: 10.1016/j.biomaterials.2011.07.001. Epub 2011 Jul 22.

5.

In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors.

Szot CS, Buchanan CF, Freeman JW, Rylander MN.

Tissue Eng Part C Methods. 2013 Nov;19(11):864-74. doi: 10.1089/ten.TEC.2012.0684. Epub 2013 Apr 26.

6.

Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.

Shao J, Wu L, Wu J, Zheng Y, Zhao H, Jin Q, Zhao J.

Lab Chip. 2009 Nov 7;9(21):3118-25. doi: 10.1039/b909312e. Epub 2009 Aug 18.

PMID:
19823728
7.
8.

Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: effect of disturbed shear stress conditions.

Vrana NE, Cahill PA, McGuinness GB.

J Biomed Mater Res A. 2010 Sep 15;94(4):1080-90. doi: 10.1002/jbm.a.32790.

PMID:
20694975
9.

A contact line pinning based microfluidic platform for modelling physiological flows.

Tung CK, Krupa O, Apaydin E, Liou JJ, Diaz-Santana A, Kim BJ, Wu M.

Lab Chip. 2013 Oct 7;13(19):3876-85. doi: 10.1039/c3lc50489a.

10.

Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression.

Qazi H, Shi ZD, Tarbell JM.

PLoS One. 2011;6(5):e20348. doi: 10.1371/journal.pone.0020348. Epub 2011 May 26.

11.

Patterning cells and shear flow conditions: convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response.

Wang L, Zhang ZL, Wdzieczak-Bakala J, Pang DW, Liu J, Chen Y.

Lab Chip. 2011 Dec 21;11(24):4235-40. doi: 10.1039/c1lc20722a. Epub 2011 Nov 3.

PMID:
22051695
12.

Blocking αvβ3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells.

Montenegro CF, Salla-Pontes CL, Ribeiro JU, Machado AZ, Ramos RF, Figueiredo CC, Morandi V, Selistre-de-Araujo HS.

Biochimie. 2012 Aug;94(8):1812-20. doi: 10.1016/j.biochi.2012.04.020. Epub 2012 Apr 27.

13.

A novel in vitro model of lymphatic metastasis from colorectal cancer.

Yoo PS, Mulkeen AL, Dardik A, Cha CH.

J Surg Res. 2007 Nov;143(1):94-8. Epub 2007 Jul 19.

PMID:
17640671
14.

Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging.

Vickerman V, Blundo J, Chung S, Kamm R.

Lab Chip. 2008 Sep;8(9):1468-77. doi: 10.1039/b802395f. Epub 2008 Jul 18.

15.

Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.

Tang Z, Akiyama Y, Itoga K, Kobayashi J, Yamato M, Okano T.

Biomaterials. 2012 Oct;33(30):7405-11. doi: 10.1016/j.biomaterials.2012.06.077. Epub 2012 Jul 20.

PMID:
22818649
16.

Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.

Jeong GS, Kwon GH, Kang AR, Jung BY, Park Y, Chung S, Lee SH.

Biomed Microdevices. 2011 Aug;13(4):717-23. doi: 10.1007/s10544-011-9541-7.

PMID:
21494794
17.

Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.

van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL.

Lab Chip. 2013 Sep 21;13(18):3562-8. doi: 10.1039/c3lc50435b.

PMID:
23702711
18.

In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.

Lima R, Wada S, Tanaka S, Takeda M, Ishikawa T, Tsubota K, Imai Y, Yamaguchi T.

Biomed Microdevices. 2008 Apr;10(2):153-67.

PMID:
17885805
19.

Endothelial cell behaviour within a microfluidic mimic of the flow channels of a modular tissue engineered construct.

Khan OF, Sefton MV.

Biomed Microdevices. 2011 Feb;13(1):69-87. doi: 10.1007/s10544-010-9472-8.

20.

Human progenitor-derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study.

Thebaud NB, Bareille R, Remy M, Bourget C, Daculsi R, Bordenave L.

J Tissue Eng Regen Med. 2010 Aug;4(6):473-84. doi: 10.1002/term.261.

PMID:
20112278
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk