Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94


Stbd1 is highly elevated in skeletal muscle of Pompe disease mice but suppression of its expression does not affect lysosomal glycogen accumulation.

Yi H, Fredrickson KB, Das S, Kishnani PS, Sun B.

Mol Genet Metab. 2013 Jul;109(3):312-4. doi: 10.1016/j.ymgme.2013.05.004. Epub 2013 May 18.


Antibody formation and mannose-6-phosphate receptor expression impact the efficacy of muscle-specific transgene expression in murine Pompe disease.

Sun B, Li S, Bird A, Yi H, Kemper A, Thurberg BL, Koeberl DD.

J Gene Med. 2010 Nov;12(11):881-91. doi: 10.1002/jgm.1511. Epub 2010 Oct 22.


Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease.

Farah BL, Madden L, Li S, Nance S, Bird A, Bursac N, Yen PM, Young SP, Koeberl DD.

FASEB J. 2014 May;28(5):2272-80. doi: 10.1096/fj.13-244202. Epub 2014 Jan 21.


Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.

Sun T, Yi H, Yang C, Kishnani PS, Sun B.

J Biol Chem. 2016 Jun 29. pii: jbc.C116.741397. [Epub ahead of print]


The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.

Khanna R, Powe AC Jr, Lun Y, Soska R, Feng J, Dhulipala R, Frascella M, Garcia A, Pellegrino LJ, Xu S, Brignol N, Toth MJ, Do HV, Lockhart DJ, Wustman BA, Valenzano KJ.

PLoS One. 2014 Jul 18;9(7):e102092. doi: 10.1371/journal.pone.0102092. eCollection 2014.


Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle.

Takikita S, Schreiner C, Baum R, Xie T, Ralston E, Plotz PH, Raben N.

PLoS One. 2010 Dec 13;5(12):e15239. doi: 10.1371/journal.pone.0015239.


Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease.

Douillard-Guilloux G, Raben N, Takikita S, Ferry A, Vignaud A, Guillet-Deniau I, Favier M, Thurberg BL, Roach PJ, Caillaud C, Richard E.

Hum Mol Genet. 2010 Feb 15;19(4):684-96. doi: 10.1093/hmg/ddp535. Epub 2009 Dec 3.


Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease.

Fukuda T, Ahearn M, Roberts A, Mattaliano RJ, Zaal K, Ralston E, Plotz PH, Raben N.

Mol Ther. 2006 Dec;14(6):831-9. Epub 2006 Sep 27.


Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers.

Raben N, Fukuda T, Gilbert AL, de Jong D, Thurberg BL, Mattaliano RJ, Meikle P, Hopwood JJ, Nagashima K, Nagaraju K, Plotz PH.

Mol Ther. 2005 Jan;11(1):48-56.


Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter.

Sun B, Zhang H, Franco LM, Brown T, Bird A, Schneider A, Koeberl DD.

Mol Ther. 2005 Jun;11(6):889-98.


Evaluation of systemic follistatin as an adjuvant to stimulate muscle repair and improve motor function in Pompe mice.

Foley JW, Bercury SD, Finn P, Cheng SH, Scheule RK, Ziegler RJ.

Mol Ther. 2010 Sep;18(9):1584-91. doi: 10.1038/mt.2010.110. Epub 2010 Jun 15.


Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches.

Takikita S, Myerowitz R, Zaal K, Raben N, Plotz PH.

Mol Genet Metab. 2009 Apr;96(4):208-17. doi: 10.1016/j.ymgme.2008.12.012. Epub 2009 Jan 22.


Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1.

Jiang S, Wells CD, Roach PJ.

Biochem Biophys Res Commun. 2011 Sep 30;413(3):420-5. doi: 10.1016/j.bbrc.2011.08.106. Epub 2011 Aug 27.


Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease.

Todd AG, McElroy JA, Grange RW, Fuller DD, Walter GA, Byrne BJ, Falk DJ.

Ann Neurol. 2015 Aug;78(2):222-34. doi: 10.1002/ana.24433. Epub 2015 Jun 30.


Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite high-level vector-mediated transgene expression.

Sun B, Zhang H, Bird A, Li S, Young SP, Koeberl DD.

J Gene Med. 2009 Oct;11(10):913-20. doi: 10.1002/jgm.1372.


Dysregulation of multiple facets of glycogen metabolism in a murine model of Pompe disease.

Taylor KM, Meyers E, Phipps M, Kishnani PS, Cheng SH, Scheule RK, Moreland RJ.

PLoS One. 2013;8(2):e56181. doi: 10.1371/journal.pone.0056181. Epub 2013 Feb 14.


Improved efficacy of gene therapy approaches for Pompe disease using a new, immune-deficient GSD-II mouse model.

Xu F, Ding E, Liao SX, Migone F, Dai J, Schneider A, Serra D, Chen YT, Amalfitano A.

Gene Ther. 2004 Nov;11(21):1590-8.


Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism.

Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, Wells CD, Skurat AV, Roach PJ.

J Biol Chem. 2010 Nov 5;285(45):34960-71. doi: 10.1074/jbc.M110.150839. Epub 2010 Sep 1. Erratum in: J Biol Chem. 2011 Nov 11;286(45):39673.


Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation.

Shemesh A, Wang Y, Yang Y, Yang GS, Johnson DE, Backer JM, Pessin JE, Zong H.

Am J Physiol Regul Integr Comp Physiol. 2014 Nov 15;307(10):R1251-9. doi: 10.1152/ajpregu.00212.2014. Epub 2014 Sep 17.

Items per page

Supplemental Content

Write to the Help Desk