Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 232

1.

Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications.

Xie KY, Wang Y, Zhao Y, Chang L, Wang G, Chen Z, Cao Y, Liao X, Lavernia EJ, Valiev RZ, Sarrafpour B, Zoellner H, Ringer SP.

Mater Sci Eng C Mater Biol Appl. 2013 Aug 1;33(6):3530-6. doi: 10.1016/j.msec.2013.04.044. Epub 2013 Apr 29.

PMID:
23706243
2.

Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.

Liu H, Niinomi M, Nakai M, Hieda J, Cho K.

J Mech Behav Biomed Mater. 2014 Feb;30:205-13. doi: 10.1016/j.jmbbm.2013.11.001. Epub 2013 Nov 15.

PMID:
24317494
3.

Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus.

Bai Y, Deng Y, Zheng Y, Li Y, Zhang R, Lv Y, Zhao Q, Wei S.

Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:565-76. doi: 10.1016/j.msec.2015.10.062. Epub 2015 Oct 21.

PMID:
26652409
4.

β-Type titanium alloys for spinal fixation surgery with high Young's modulus variability and good mechanical properties.

Liu H, Niinomi M, Nakai M, Cho K.

Acta Biomater. 2015 Sep;24:361-9. doi: 10.1016/j.actbio.2015.06.022. Epub 2015 Jun 20.

PMID:
26102334
5.

Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications.

Santos PF, Niinomi M, Cho K, Nakai M, Liu H, Ohtsu N, Hirano M, Ikeda M, Narushima T.

Acta Biomater. 2015 Oct;26:366-76. doi: 10.1016/j.actbio.2015.08.015. Epub 2015 Aug 14.

PMID:
26283166
6.

Influence of in situ TiB reinforcements and role of heat treatment on mechanical properties and biocompatibility of β Ti-alloys.

Majumdar P, Singh SB, Dhara S, Chakraborty M.

J Mech Behav Biomed Mater. 2012 Jun;10:1-12. doi: 10.1016/j.jmbbm.2012.02.014. Epub 2012 Feb 27.

PMID:
22520414
7.

Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion.

Yilmazer H, Niinomi M, Nakai M, Hieda J, Todaka Y, Akahori T, Miyazaki T.

J Mech Behav Biomed Mater. 2012 Jun;10:235-45. doi: 10.1016/j.jmbbm.2012.02.022. Epub 2012 Mar 4.

PMID:
22520435
8.

Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy.

Park CH, Lee CS, Kim YJ, Jang JH, Suh JY, Park JW.

Clin Oral Implants Res. 2011 Jul;22(7):735-42. doi: 10.1111/j.1600-0501.2010.02053.x. Epub 2010 Dec 2.

PMID:
21121961
9.

Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.

Zhao X, Niinomi M, Nakai M.

J Mech Behav Biomed Mater. 2011 Nov;4(8):2009-16. doi: 10.1016/j.jmbbm.2011.06.020. Epub 2011 Jul 3.

PMID:
22098900
10.

The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus.

Miura K, Yamada N, Hanada S, Jung TK, Itoi E.

Acta Biomater. 2011 May;7(5):2320-6. doi: 10.1016/j.actbio.2011.02.008. Epub 2011 Feb 26.

PMID:
21316491
11.

Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.

Wang P, Feng Y, Liu F, Wu L, Guan S.

Mater Sci Eng C Mater Biol Appl. 2015 Jun;51:148-52. doi: 10.1016/j.msec.2015.02.028. Epub 2015 Feb 24.

PMID:
25842119
12.

Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications.

Zhao X, Niinomi M, Nakai M, Hieda J.

Acta Biomater. 2012 May;8(5):1990-7. doi: 10.1016/j.actbio.2012.02.004. Epub 2012 Feb 9.

PMID:
22326686
13.

Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition.

Li Q, Niinomi M, Hieda J, Nakai M, Cho K.

Acta Biomater. 2013 Aug;9(8):8027-35. doi: 10.1016/j.actbio.2013.04.032. Epub 2013 Apr 25.

PMID:
23624220
14.

Biocompatible low Young's modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal.

Lee SH, Todai M, Tane M, Hagihara K, Nakajima H, Nakano T.

J Mech Behav Biomed Mater. 2012 Oct;14:48-54. doi: 10.1016/j.jmbbm.2012.05.005. Epub 2012 May 22.

PMID:
22963746
15.

Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications.

Gordin DM, Ion R, Vasilescu C, Drob SI, Cimpean A, Gloriant T.

Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:362-70. doi: 10.1016/j.msec.2014.08.003. Epub 2014 Aug 7.

PMID:
25280716
16.

First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications.

Karre R, Niranjan MK, Dey SR.

Mater Sci Eng C Mater Biol Appl. 2015 May;50:52-8. doi: 10.1016/j.msec.2015.01.061. Epub 2015 Jan 24.

PMID:
25746245
17.

Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.

Zhao X, Niinomi M, Nakai M, Miyamoto G, Furuhara T.

Acta Biomater. 2011 Aug;7(8):3230-6. doi: 10.1016/j.actbio.2011.04.019. Epub 2011 Apr 27.

PMID:
21569873
18.

Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion.

Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, Miyazaki T.

Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2499-507. doi: 10.1016/j.msec.2013.01.056. Epub 2013 Feb 1.

PMID:
23623060
19.

Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.

Koike M, Hummel SK, Ball JD, Okabe T.

J Prosthet Dent. 2012 Jun;107(6):393-9. doi: 10.1016/S0022-3913(12)60098-5.

PMID:
22633596
20.

The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.

Ning C, Ding D, Dai K, Zhai W, Chen L.

Biomed Mater. 2010 Aug;5(4):045006. doi: 10.1088/1748-6041/5/4/045006. Epub 2010 Jul 6.

PMID:
20603527
Items per page

Supplemental Content

Write to the Help Desk