Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

[A novel modi cation of real-time AS-qPCR by using locked nucleic acid-modified oligonucleotide probe as wild type allele amplification blockers for quantitative detection of the JAK2 V617F mutation].

Shao DH, Liang GW, He ML, Cao QY.

Zhonghua Xue Ye Xue Za Zhi. 2013 May;34(5):421-5. doi: 10.3760/cma.j.issn.0253-2727.2013.05.010. Chinese.

PMID:
23688754
2.
3.

Quantitative threefold allele-specific PCR (QuanTAS-PCR) for highly sensitive JAK2 V617F mutant allele detection.

Zapparoli GV, Jorissen RN, Hewitt CA, McBean M, Westerman DA, Dobrovic A.

BMC Cancer. 2013 Apr 24;13:206. doi: 10.1186/1471-2407-13-206.

4.

Validity test study of JAK2 V617F and allele burden quantification in the diagnosis of myeloproliferative diseases.

Rapado I, Albizua E, Ayala R, Hernández JA, Garcia-Alonso L, Grande S, Gallardo M, Gilsanz F, Martinez-Lopez J.

Ann Hematol. 2008 Sep;87(9):741-9. doi: 10.1007/s00277-008-0512-x. Epub 2008 Jun 25.

PMID:
18575865
5.

Design and evaluation of a real-time PCR assay for quantification of JAK2 V617F and wild-type JAK2 transcript levels in the clinical laboratory.

Merker JD, Jones CD, Oh ST, Schrijver I, Gotlib J, Zehnder JL.

J Mol Diagn. 2010 Jan;12(1):58-64. doi: 10.2353/jmoldx.2010.090068. Epub 2009 Dec 3.

6.

A real-time polymerase chain reaction assay for rapid, sensitive, and specific quantification of the JAK2V617F mutation using a locked nucleic acid-modified oligonucleotide.

Denys B, El Housni H, Nollet F, Verhasselt B, Philippé J.

J Mol Diagn. 2010 Jul;12(4):512-9. doi: 10.2353/jmoldx.2010.090137. Epub 2010 Apr 29.

7.

Sensitive detection and quantification of the JAK2V617F allele by real-time PCR blocking wild-type amplification by using a peptide nucleic acid oligonucleotide.

Huijsmans CJ, Poodt J, Savelkoul PH, Hermans MH.

J Mol Diagn. 2011 Sep;13(5):558-64. doi: 10.1016/j.jmoldx.2011.04.002. Epub 2011 Jun 30.

8.

Accurate quantitation of JAK2 V617F allele burden by array-based digital PCR.

Kinz E, Leiherer A, Lang AH, Drexel H, Muendlein A.

Int J Lab Hematol. 2015 Apr;37(2):217-24. doi: 10.1111/ijlh.12269. Epub 2014 Jun 25.

PMID:
24963593
9.

Improved diagnosis of the transition to JAK2 (V⁶¹⁷F) homozygosity: the key feature for predicting the evolution of myeloproliferative neoplasms.

Gonzalez MS, De Brasi CD, Bianchini M, Gargallo P, Stanganelli C, Zalcberg I, Larripa IB.

PLoS One. 2014 Jan 27;9(1):e86401. doi: 10.1371/journal.pone.0086401. eCollection 2014.

10.

[Usefulness of real-time semi-quantitative PCR, JAK2 MutaScreen kit for JAK2 V617F screening].

Chae H, Lee JH, Lim J, Jung SW, Kim M, Kim Y, Han K, Cho BS, Cho SG, Lee JW, Min WS.

Korean J Lab Med. 2009 Jun;29(3):243-8. doi: 10.3343/kjlm.2009.29.3.243. Korean.

11.

Sensitive and accurate quantification of JAK2 V617F mutation in chronic myeloproliferative neoplasms by droplet digital PCR.

Waterhouse M, Follo M, Pfeifer D, von Bubnoff N, Duyster J, Bertz H, Finke J.

Ann Hematol. 2016 Apr;95(5):739-44. doi: 10.1007/s00277-016-2623-0. Epub 2016 Mar 1.

PMID:
26931113
12.

Locked nucleic acid probes for enhanced detection of FLT3 D835/I836, JAK2 V617F and NPM1 mutations.

Warshawsky I, Mularo F.

J Clin Pathol. 2011 Oct;64(10):905-10. doi: 10.1136/jclinpath-2011-200086. Epub 2011 Jun 10.

PMID:
21666141
13.
14.

Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

Wu Z, Yuan H, Zhang X, Liu W, Xu J, Zhang W, Guan M.

PLoS One. 2011;6(10):e26534. doi: 10.1371/journal.pone.0026534. Epub 2011 Oct 20.

15.

Rapid quantification of JAK2 V617F allele burden using a bead-based liquid assay with locked nucleic acid-modified oligonucleotide probes.

Shivarov V, Ivanova M, Hadjiev E, Naumova E.

Leuk Lymphoma. 2011 Oct;52(10):2023-6. doi: 10.3109/10428194.2011.584995. Epub 2011 Jun 24. No abstract available.

PMID:
21702645
16.

A sensitive and reliable semi-quantitative real-time PCR assay to detect JAK2 V617F in blood.

Poodt J, Fijnheer R, Walsh IB, Hermans MH.

Hematol Oncol. 2006 Dec;24(4):227-33.

PMID:
17006961
17.

Rapid identification of heterozygous or homozygous JAK2(V617F) mutations in myeloproliferative neoplasms using melting curve analysis.

Ho CL, Wu YY, Hung HM, Chang PY, Kao WY, Chen YC, Chao TY.

J Formos Med Assoc. 2012 Jan;111(1):34-40. doi: 10.1016/j.jfma.2012.01.003. Epub 2012 Feb 1.

18.

The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis--impact on disease phenotype.

Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC.

Eur J Haematol. 2007 Dec;79(6):508-15. Epub 2007 Oct 23.

PMID:
17961178
19.

Polycythemia vera is not initiated by JAK2V617F mutation.

Nussenzveig RH, Swierczek SI, Jelinek J, Gaikwad A, Liu E, Verstovsek S, Prchal JF, Prchal JT.

Exp Hematol. 2007 Jan;35(1):32-8.

PMID:
17198871
20.

Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study.

Jovanovic JV, Ivey A, Vannucchi AM, Lippert E, Oppliger Leibundgut E, Cassinat B, Pallisgaard N, Maroc N, Hermouet S, Nickless G, Guglielmelli P, van der Reijden BA, Jansen JH, Alpermann T, Schnittger S, Bench A, Tobal K, Wilkins B, Cuthill K, McLornan D, Yeoman K, Akiki S, Bryon J, Jeffries S, Jones A, Percy MJ, Schwemmers S, Gruender A, Kelley TW, Reading S, Pancrazzi A, McMullin MF, Pahl HL, Cross NC, Harrison CN, Prchal JT, Chomienne C, Kiladjian JJ, Barbui T, Grimwade D.

Leukemia. 2013 Oct;27(10):2032-9. doi: 10.1038/leu.2013.219. Epub 2013 Jul 17.

Items per page

Supplemental Content

Write to the Help Desk