Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Unifying autocatalytic and zeroth-order branching models for growing actin networks.

Weichsel J, Baczynski K, Schwarz US.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):040701. Epub 2013 Apr 3.

PMID:
23679361
2.

Kinetic overshoot in actin network assembly induced jointly by branching and capping proteins.

Kang H, Carlsson AE, Tang JX.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041913. Epub 2009 Oct 9.

PMID:
19905348
3.

Two competing orientation patterns explain experimentally observed anomalies in growing actin networks.

Weichsel J, Schwarz US.

Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6304-9. doi: 10.1073/pnas.0913730107. Epub 2010 Mar 22.

4.
5.

Actin filament curvature biases branching direction.

Risca VI, Wang EB, Chaudhuri O, Chia JJ, Geissler PL, Fletcher DA.

Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2913-8. doi: 10.1073/pnas.1114292109. Epub 2012 Jan 30.

6.

Nonequilibrium actin polymerization treated by a truncated rate-equation method.

Brooks FJ, Carlsson AE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031914. Epub 2009 Mar 24.

7.

Mechanisms of actin disassembly.

Brieher W.

Mol Biol Cell. 2013 Aug;24(15):2299-302. doi: 10.1091/mbc.E12-09-0694.

8.

Growth velocities of branched actin networks.

Carlsson AE.

Biophys J. 2003 May;84(5):2907-18.

9.

Vinculin is a dually regulated actin filament barbed end-capping and side-binding protein.

Le Clainche C, Dwivedi SP, Didry D, Carlier MF.

J Biol Chem. 2010 Jul 23;285(30):23420-32. doi: 10.1074/jbc.M110.102830. Epub 2010 May 18.

10.

Steady state dynamics of a moving model cell.

Simon A, Satyanarayana SV.

J Phys Condens Matter. 2012 Feb 15;24(6):065104. doi: 10.1088/0953-8984/24/6/065104. Epub 2012 Jan 10.

PMID:
22231907
11.

Dendritic actin filament nucleation causes traveling waves and patches.

Carlsson AE.

Phys Rev Lett. 2010 Jun 4;104(22):228102. Epub 2010 Jun 1.

12.
13.

Kinetic mechanism of end-to-end annealing of actin filaments.

Andrianantoandro E, Blanchoin L, Sept D, McCammon JA, Pollard TD.

J Mol Biol. 2001 Sep 28;312(4):721-30.

PMID:
11575927
14.

Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

Rebowski G, Namgoong S, Boczkowska M, Leavis PC, Navaza J, Dominguez R.

J Mol Biol. 2010 Oct 15;403(1):11-23. doi: 10.1016/j.jmb.2010.08.040. Epub 2010 Sep 8.

15.

A mechanochemical model of actin filaments.

Yogurtcu ON, Kim JS, Sun SX.

Biophys J. 2012 Aug 22;103(4):719-27. doi: 10.1016/j.bpj.2012.07.020. Erratum in: Biophys J. 2013 Feb 5;104(3):737-8.

16.

Treadmilling and length distributions of active polar filaments.

Erlenkämper C, Kruse K.

J Chem Phys. 2013 Oct 28;139(16):164907. doi: 10.1063/1.4825248.

PMID:
24182079
17.

A structural basis for regulation of actin polymerization by pectenotoxins.

Allingham JS, Miles CO, Rayment I.

J Mol Biol. 2007 Aug 24;371(4):959-70. Epub 2007 May 25.

18.

Mechanism for CARMIL protein inhibition of heterodimeric actin-capping protein.

Kim T, Ravilious GE, Sept D, Cooper JA.

J Biol Chem. 2012 May 4;287(19):15251-62. doi: 10.1074/jbc.M112.345447. Epub 2012 Mar 12.

19.

Effects of molecular-scale processes on observable growth properties of actin networks.

Zhu J, Carlsson AE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031914. Epub 2010 Mar 22.

20.

Effect of capping protein on the kinetics of actin polymerization.

Cooper JA, Pollard TD.

Biochemistry. 1985 Jan 29;24(3):793-9.

PMID:
3994986
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk