Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 114

Similar articles for PubMed (Select 23668959)

1.

HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes--the ultimate approach for intra- and extracellular superoxide detection.

Kalyanaraman B, Dranka BP, Hardy M, Michalski R, Zielonka J.

Biochim Biophys Acta. 2014 Feb;1840(2):739-44. doi: 10.1016/j.bbagen.2013.05.008. Epub 2013 May 10. Review.

2.

Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth.

Zielonka J, Kalyanaraman B.

Free Radic Biol Med. 2010 Apr 15;48(8):983-1001. doi: 10.1016/j.freeradbiomed.2010.01.028. Epub 2010 Jan 29. Review.

3.

Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species.

Kalyanaraman B.

Biochem Soc Trans. 2011 Oct;39(5):1221-5. doi: 10.1042/BST0391221. Review.

PMID:
21936793
4.

Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases.

Nauseef WM.

Biochim Biophys Acta. 2014 Feb;1840(2):757-67. doi: 10.1016/j.bbagen.2013.04.040. Epub 2013 May 7. Review.

5.

Hydropropidine: a novel, cell-impermeant fluorogenic probe for detecting extracellular superoxide.

Michalski R, Zielonka J, Hardy M, Joseph J, Kalyanaraman B.

Free Radic Biol Med. 2013 Jan;54:135-47. doi: 10.1016/j.freeradbiomed.2012.09.018. Epub 2012 Oct 7.

6.

The confounding effects of light, sonication, and Mn(III)TBAP on quantitation of superoxide using hydroethidine.

Zielonka J, Vasquez-Vivar J, Kalyanaraman B.

Free Radic Biol Med. 2006 Oct 1;41(7):1050-7. Epub 2006 Apr 30.

PMID:
16962930
7.

Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine.

Zielonka J, Vasquez-Vivar J, Kalyanaraman B.

Nat Protoc. 2008;3(1):8-21. doi: 10.1038/nprot.2007.473.

PMID:
18193017
8.

HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements.

Zielonka J, Hardy M, Kalyanaraman B.

Free Radic Biol Med. 2009 Feb 1;46(3):329-38. doi: 10.1016/j.freeradbiomed.2008.10.031. Epub 2008 Oct 29. Erratum in: Free Radic Biol Med. 2010 Jan 15;48(2):373.

9.

Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: identification of homo- and heterodimers.

Zielonka J, Srinivasan S, Hardy M, Ouari O, Lopez M, Vasquez-Vivar J, Avadhani NG, Kalyanaraman B.

Free Radic Biol Med. 2008 Mar 1;44(5):835-46. Epub 2007 Dec 4.

10.

Selective fluorescent imaging of superoxide in vivo using ethidium-based probes.

Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS.

Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15038-43. Epub 2006 Oct 2.

11.

Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide.

Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B.

Free Radic Biol Med. 2003 Jun 1;34(11):1359-68.

PMID:
12757846
12.

Mechanistic similarities between oxidation of hydroethidine by Fremy's salt and superoxide: stopped-flow optical and EPR studies.

Zielonka J, Zhao H, Xu Y, Kalyanaraman B.

Free Radic Biol Med. 2005 Oct 1;39(7):853-63.

PMID:
16140206
13.

Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence.

Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez-Vivar J, Kalyanaraman B.

Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5727-32. Epub 2005 Apr 11. Erratum in: Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):9086.

14.

Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical.

Benov L, Sztejnberg L, Fridovich I.

Free Radic Biol Med. 1998 Nov 1;25(7):826-31.

PMID:
9823548
15.

The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells.

Winterbourn CC.

Biochim Biophys Acta. 2014 Feb;1840(2):730-8. doi: 10.1016/j.bbagen.2013.05.004. Epub 2013 May 10. Review.

PMID:
23665586
16.

Detection and identification of oxidants formed during •NO/O2•⁻ reaction: a multi-well plate CW-EPR spectroscopy combined with HPLC analyses.

Koto T, Michalski R, Zielonka J, Joseph J, Kalyanaraman B.

Free Radic Res. 2014 Apr;48(4):478-86. doi: 10.3109/10715762.2014.886774.

PMID:
24460755
17.

Intracellular oxidation of hydroethidine: compartmentalization and cytotoxicity of oxidation products.

Lyublinskaya OG, Zenin VV, Shatrova AN, Aksenov ND, Zemelko VI, Domnina AP, Litanyuk AP, Burova EB, Gubarev SS, Negulyaev YA, Nikolsky NN.

Free Radic Biol Med. 2014 Oct;75:60-8. doi: 10.1016/j.freeradbiomed.2014.07.008. Epub 2014 Jul 15.

PMID:
25035077
18.

Chemical cytometry quantitates superoxide levels in the mitochondrial matrix of single myoblasts.

Xu X, Arriaga EA.

Anal Chem. 2010 Aug 15;82(16):6745-50. doi: 10.1021/ac101509d.

19.

The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins.

Papapostolou I, Patsoukis N, Georgiou CD.

Anal Biochem. 2004 Sep 15;332(2):290-8.

PMID:
15325298
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk